Page 32 - 《爆炸与冲击》2025年第5期
P. 32

第 45 卷         柏劲松,等: 端到端机器学习代理模型构建及其在爆轰驱动问题中的应用                                第 5 期

                   感谢中国工程物理研究院流体物理研究所实验物理数值模拟创新研究中心原职工张恒第在计
               算程序实现上提供的帮助。



               参考文献:

               [1]   杨凯, 吕文泉, 闫胜斌. 智能化时代的作战方式变革 [J]. 军事文摘, 2022(1): 7–11.
                    YANG K, LYU W Q, YAN S B. Reform of combat methods in the era of intelligence [J]. Military Digest, 2022(1): 7–11.
               [2]   中国国防科技信息中心. DARPA       成功完成“海上猎手”无人水面艇项目 [R/OL]. (2018-02-02)[2024-04-07]. https://
                    www.sohu.com/a/220477417_313834.
                    China  National  Defense  Science  and  Technology  Information  Center.  DARPA  successfully  completed  the  Sea  Hunter
                    unmanned surface vehicle project [R/OL]. (2018-02-02)[2024-04-07]. https://www.sohu.com/a/220477417_313834.
               [3]   DATTELBAUM A M. Materials dynamics: LA-UR-22-25248 [R]. Los Alamos: Los Alamos National Laboratory, 2022.
               [4]   SHALEV-SHWARTZ  S,  SHAMMAH  S,  SHASHUA  A.  Safe,  multi-agent,  reinforcement  learning  for  autonomous
                    driving [EB/OL]. arXiv: 1610.03295. (2016-11-11)[2024-04-10]. https://arxiv.org/abs/1610.03295. DOI: 10.48550/arXiv.1610.
                    03295.
               [5]   CHAR D S, SHAH N H, MAGNUS D. Implementing machine learning in health care—addressing ethical challenges [J]. The
                    New England Journal of Medicine, 2018, 378(11): 981–983. DOI: 10.1056/NEJMp1714229.
               [6]   LIN W Y, HU Y H, TSAI C F. Machine learning in financial crisis prediction: a survey [J]. IEEE Transactions on Systems,
                    Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(4): 421–436. DOI: 10.1109/TSMCC.2011.2170420.
               [7]   LIPSON H, POLLACK J B. Automatic design and manufacture of robotic lifeforms [J]. Nature, 2000, 406(6799): 974–978.
                    DOI: 10.1038/35023115.
               [8]   BERRAL  J  L,  GOIRI  Í,  NOU  R,  et  al.  Towards  energy-aware  scheduling  in  data  centers  using  machine  learning  [C]//
                    Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. Passau: ACM, 2010: 215–
                    224. DOI: 10.1145/1791314.1791349.
               [9]   ENGEL A, VAN DEN BROECK C. Statistical mechanics of learning [M]. Cambridge: Cambridge University Press, 2001.
               [10]   CARLEO  G,  TROYER  M.  Solving  the  quantum  many-body  problem  with  artificial  neural  networks  [J].  Science,  2017,
                    355(6325): 602–606. DOI: 10.1126/science.aag2302.
               [11]   SCHAFER N P, KIM B L, ZHENG W H, et al. Learning to fold proteins using energy landscape theory [J]. Israel Journal of
                    Chemistry, 2014, 54(8/9): 1311–1337. DOI: 10.1002/ijch.201300145.
               [12]   VANDERPLAS  J,  CONNOLLY  A  J,  IVEZIĆ  Ž,  et  al.  Introduction  to  astroML:  machine  learning  for  astrophysics  [C]//
                    Proceedings  of  2012  Conference  on  Intelligent  Data  Understanding.  Boulder:  IEEE,  2012:  47–54.  DOI:  10.1109/CIDU.
                    2012.6382200.
               [13]   BLASCHKE  D  N,  NGUYEN  T,  NITOL  M,  et  al.  Machine  learning  based  approach  to  predict  ductile  damage  model
                    parameters for polycrystalline metals [J]. Computational Materials Science, 2023, 229: 112382. DOI: 10.1016/j.commatsci.
                    2023.112382.
               [14]   FERNÁNDEZ-GODINO M G, PANDA N, O’MALLEY D, et al. Accelerating high-strain continuum-scale brittle fracture
                    simulations  with  machine  learning  [J].  Computational  Materials  Science,  2021,  186:  109959.  DOI:  10.1016/j.commatsci.
                    2020.109959.
               [15]   杨寓翔, 李炜, 申建民, 等. 机器学习在相变中的应用 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(9): 290011. DOI:
                    10.1360/SSPMA-2023-0130.
                    YANG  Y  X,  LI  W,  SHEN  J  M,  et  al.  Machine  learning  applications  in  phase  transitions  [J].  Scientia  Sinica  Physica,
                    Mechanica & Astronomica, 2023, 53(9): 290011. DOI: 10.1360/SSPMA-2023-0130.
               [16]   刘泮宏. 基于机器学习的湍流建模应用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021. DOI: 10.27061/d.cnki.ghgdu.2021.
                    001683.
                    LIU P H. Application of turbulence modeling based on machine learning [D]. Harbin: Harbin Institute of Technology, 2021.
                    DOI: 10.27061/d.cnki.ghgdu.2021.001683.
               [17]   刘永泽. 水下爆炸载荷下板架结构毁伤特性的机器学习方法及应用研究 [D]. 哈尔滨: 哈尔滨工程大学, 2022. DOI:


                                                         051101-11
   27   28   29   30   31   32   33   34   35   36   37