Page 141 - 《爆炸与冲击》2025年第5期
P. 141
第 45 卷 钱秉文,等: 超高速撞击条件下混凝土靶体内 应力波的测量和分析 第 5 期
[3] 王明洋, 岳松林, 李海波, 等. 超高速弹撞击岩石的地冲击效应等效计算 [J]. 岩石力学与工程学报, 2018, 37(12):
2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.
WANG M Y, YUE S L, LI H B, et al. An equivalent calculation method of ground shock effects of hypervelocity projectile
striking on rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.
jrme.2018.0473.
[4] 牛雯霞, 黄洁, 罗锦阳, 等. 超高速撞击混凝土冲击压力测量与分析 [J]. 兵工学报, 2009, 30(S2): 242–246.
NIU W X, HUANG J, LUO J Y, et al. Measurement and analysis for shock pressure in hypervelocity impact on concrete
target [J]. Acta Armamentarii, 2009, 30(S2): 242–246.
[5] KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975. DOI:
10.1143/JJAP.8.975.
[6] BAUER F. Method and device for polarizing ferroelectric materials: US4611260 [P]. 1986.
[7] GRAHAM R A, LEE L M, BAUER F. Response of Bauer piezoelectric polymer stress gauges (PVDF) (polyvinylidene
fluoride) to shock loading [R]. Albuquerque: Sandia National Labs. , 1987.
[8] 席道瑛, 郑永来. PVDF 压电计在动态应力测量中的应用 [J]. 爆炸与冲击, 1995, 15(2): 174–179.
XI D Y, ZHENG Y L. Application of PVDF gauges to dynamical stress measurements [J]. Explosion and Shock Waves, 1995,
15(2): 174–179.
[9] 李焰, 钟方平, 刘乾, 等. PVDF 在动态应变测量中的应用 [J]. 爆炸与冲击, 2003, 23(3): 230–234.
LI Y, ZHONG F P, LIU Q, et al. Application of PVDF to dynamic strain measurement [J]. Explosion and Shock Waves, 2003,
23(3): 230–234.
[10] 巫绪涛, 胡时胜, 田杰. PVDF 应力测量技术及在混凝土冲击实验中的应用 [J]. 爆炸与冲击, 2007, 27(5): 411–415. DOI:
10.11883/1001-1455(2007)05-0411-05.
WU X T, HU S S, TIAN J. Stress-measurement method by PVDF gauge and its application to impact test for concrete [J].
Explosion and Shock Waves, 2007, 27(5): 411–415. DOI: 10.11883/1001-1455(2007)05-0411-05.
[11] 黄家蓉, 王晓峰, 吴飚, 等. 超高速撞击过程产生的电磁脉冲对测试信号的干扰 [J]. 防护工程, 2018, 40(2): 24–29.
HUANG J R, WANG X F, WU B, et al. Electromagnetic pulse interference to measure signal in hypervelocity impact [J].
Protective Engineering, 2018, 40(2): 24–29.
[12] 李孝兰. 硬岩中大当量地下爆炸应力波的测试和分析 [J]. 辽宁工程技术大学学报 (自然科学版), 2001, 20(4): 393–395.
DOI: 10.3969/j.issn.1008-0562.2001.04.003.
LI X L. Stress wave measurement and analyses of the underground explosions in hard rock with large yield [J]. Journal of
Liaoning Technical University (Natural Science), 2001, 20(4): 393–395. DOI: 10.3969/j.issn.1008-0562.2001.04.003.
[13] 张景森, 裴明敬, 胡华权, 等. 基于 PVDF 薄膜的水中冲击波压力测量技术 [J]. 现代应用物理, 2013, 4(3): 289–292. DOI:
10.3969/j.issn.2095-6223.2013.03.013.
ZHANG J S, PEI M J, HU H Q, et al. Measurement of underwater shock waves pressure with PVDF film [J]. Modern Applied
Physics, 2013, 4(3): 289–292. DOI: 10.3969/j.issn.2095-6223.2013.03.013.
[14] 才源, 庞宝君, 曲鑫, 等. 球形压力容器超高速撞击应力波传播特性研究 [J]. 热加工工艺, 2021, 50(4): 25–28. DOI:
10.14158/j.cnki.1001-3814.20193055.
CAI Y, PANG B J, QU X, et al. Research on stress wave propagation characteristics of gas-filled spherical pressure vessel
under hypervelocity impact [J]. Hot Working Technology, 2021, 50(4): 25–28. DOI: 10.14158/j.cnki.1001-3814.20193055.
[15] 谢呈瑞. 基于 PVDF 的空间碎片撞击航天器定位算法及系统集成 [D]. 沈阳: 沈阳理工大学, 2023. DOI: 10.27323/d.cnki.
gsgyc.2023.000184.
XIE C R. Space debris impact spacecraft location algorithm and system integration based on PVDF [D]. Shenyang: Shenyang
Ligong University, 2023. DOI: 10.27323/d.cnki.gsgyc.2023.000184.
[16] 刘震. 柔性防护结构嵌入式超高速撞击感知技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022. DOI: 10.27061/d.cnki.
ghgdu.2022.004542.
LIU Z. Research on embedded hypervelocity impact sensing technology of flexible protective structure [D]. Harbin: Harbin
Institute of Technology, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.004542.
[17] 张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-
1093.2004.01.004.
054101-11