Page 143 - 《爆炸与冲击》2025年第5期
P. 143

第 45 卷    第 5 期                   爆    炸    与    冲    击                       Vol. 45, No. 5
                2025 年 5 月                    EXPLOSION AND SHOCK WAVES                          May, 2025

               DOI:10.11883/bzycj-2024-0112


                    考虑药包爆破动-静时序作用的漏斗形成机理                                                            *


                                                康普林 ,雷    涛 ,李立峰       1,2
                                                               1,2
                                                      1,2
                           (1. 武汉理工大学关键非金属矿产资源绿色利用教育部重点实验室,湖北 武汉 430070;
                                      2. 武汉理工大学资源与环境工程学院,湖北 武汉 430070)


                  摘要: 为研究爆破漏斗的形成过程和机理,并探究该过程中爆炸应力波与爆生气体的破岩作用,基于双指数型爆
               炸载荷函数和爆生气体压力状态方程,构建了考虑药包爆破动-静时序作用的爆炸载荷加载模型,结合爆炸应力波和
               爆生气体的加载特点,建立了爆破漏斗离散元数值模型,并开展了被爆岩体的裂隙发育及破碎抛掷过程的模拟研究,
               对比了加载和不加载爆生气体的模拟结果,探讨了爆破漏斗形成过程中爆炸应力波和爆生气体的不同作用。结果表
               明:考虑药包爆破动-静时序作用的爆炸载荷加载模型模拟的爆破漏斗尺寸与现场试验结果基本吻合,可以较好地反
               映爆破岩体区域内裂隙的形成与演化规律及破碎岩体的抛掷效果。爆炸应力波加载率较大是引起爆源近区环状微裂
               隙的主要原因,同时,它会在自由面处发生反射拉伸,形成“片落”破坏;而爆生气体则是爆源远区径向长裂隙形成的
               主要原因,此外,它会推动破碎岩体以较大速度向外抛掷。爆生气体不仅具有准静态作用,也存在一定的动态作用,延
               长了爆破振动的作用时间,加强了爆破振动的速度峰值。漏斗形成过程中的裂隙发育可大致分为爆炸应力波加载致
               裂、爆生气体加载致裂以及变形能释放致裂               3  个阶段。
                  关键词: 爆破漏斗;爆炸应力波;爆生气体;裂隙发育;动-静时序作用
                  中图分类号: O383.1   国标学科代码: 13035   文献标志码: A

                           Formation mechanism of blasting crater considering the
                                   dynamic-static sequential action of blasting

                                                       1,2
                                                                1,2
                                             KANG Pulin , LEI Tao , LI Lifeng 1,2
                     (1. Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education,
                                     Wuhan University of Technology, Wuhan 430070, Hubei, China;
                 2. School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China)


               Abstract:   Research  on  blasting  craters  is  one  of  the  most  fundamental  studies  in  blasting  engineering.  To  elucidate  the
               formation process and mechanisms of blasting craters and to investigate the roles of blasting stress waves and explosion gases
               in rock fragmentation during this process, a blasting load model was developed. This model is based on a double-exponential
               explosive load function and the equation of state for explosion gas pressure, incorporating the dynamic-static sequential effects
               of blasting. By combining the distinct loading characteristics of blasting stress waves and explosion gases, a discrete element
               numerical  model  of  the  blasting  crater  was  established  to  simulate  the  development  of  fractures,  rock  fragmentation,  and
               ejection of blasted rock. Simulations were performed both with and without the inclusion of explosion gas loading to explore
               the respective contributions of blasting stress waves and explosion gases to crater formation. The results show that the blasting
               crater dimensions simulated with the dynamic-static sequential loading model align closely with field test results, accurately
               capturing the formation and evolution of fractures in the blasting zone and the ejection behavior of fragmented rock. The high
               loading rate of blasting stress waves is the primary cause of ring-shaped microfractures in the near-field region of the explosion



                 *   收稿日期: 2024-05-06;修回日期: 2024-11-24
                   基金项目: 国家自然科学基金(52104098)
                   第一作者: 康普林(1998- ),男,硕士研究生,3461113863@qq.com
                   通信作者: 雷 涛(1983- ),男,博士,讲师,leitao539@163.com


                                                         055201-1
   138   139   140   141   142   143   144   145   146   147   148