Page 27 - 《爆炸与冲击》2023年第2期
P. 27
第 43 卷 李 瑞,等: 低温和低压环境下炸药爆炸冲击波的传播特性 第 2 期
12 12
Fitted curve (Eq.(13)), p h =101.325 kPa Fitted curve (Eq.(13)), T h =20 ℃
Fitted curve (Eq.(13)), p h =74 kPa Fitted curve (Eq.(13)), T h =−18 ℃
10 10
Fitted curve (Eq.(13)), Fitted curve (Eq.(13)),
p h =57 kPa T h =−53 ℃
8 8
Z/(m·kg −1/3 ) 6 Numerical data, p h =101.325 kPa Z/(m·kg −1/3 ) 6
4 Numerical data, p h =74 kPa 4 Numerical data, T h =20 ℃
Numerical data, p h =57 kPa Numerical data, T h =−18 ℃
UFC 3-340-02, p h =101.325 kPa [20] Numerical data, T h =−53 ℃
2 Experimental data, p h =74 kPa [6] 2 UFC 3-340-02, T h =20 ℃ [20]
Experimental data, p h =57 kPa [6]
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(t/W )/(ms·kg −1/3 ) (t/W )/(ms·kg −1/3 )
1/3
1/3
(a) Diminished pressure (b) Diminished temperature
图 7 不同低压和低温环境下爆炸冲击波波阵面的运动轨迹
Fig. 7 Motion trajectories of blast wave in diminished pressure and temperature environments
750 700
700
Fitted curve (Eq.(14)), p h =101.325 kPa Fitted curve (Eq.(14)), T h =20 ℃
650 Fitted curve (Eq.(14)), p h =74 kPa 600 Fitted curve (Eq.(14)), T h =−18 ℃
600 Fitted curve (Eq.(14)), p h =57 kPa Fitted curve (Eq.(14)), T h =−53 ℃
D s /(m·s −1 ) 550 D s /(m·s −1 ) 500
500
450 400
400
350 300
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(t/W )/(ms·kg −1/3 ) (t/W )/(ms·kg −1/3 )
1/3
1/3
(a) Diminished pressure (b) Diminished temperature
图 8 不同低压和低温环境下爆炸冲击波的传播速度
Fig. 8 Propagation velocities of blast waves in diminished pressure and temperature environments
16 750
Fitted curve (Eq.(13)) Z, h=0 m
14 Fitted curve (Eq.(13)) Z, h=4 500 m 700
Fitted curve (Eq.(13)) Z, h=9 000 m 650
12 Numerical data Z, h=0 m 600
Numerical data Z, h=4 500 m
10
Z/(m·kg −1/3 ) 8 6 Numerical data Z, UFC 3-340-02 Z, h=0 m [20] 550 D s /(m·s −1 )
h=9 000 m
500
Fitted curve (Eq.(14)) D s , h=4 500 m
4 Fitted curve (Eq.(14)) D s , h=0 m 450
400
Fitted curve (Eq.(14)) D s , h=9 000 m
2 350
300
0 5 10 15 20 25 30 35 40
(t/W )/(ms·kg −1/3 )
1/3
图 9 不同海拔高度下爆炸冲击波波阵面运动轨迹及传播速度的理论、数值模拟结果与实验结果的对比
Fig. 9 Theoretical, numerical and experimental comparison of shock wave parameters
in different high-altitude environments
从图 9 可以看出,不同海拔高度下炸药爆炸冲击波波阵面运动轨迹的理论计算结果与数值模拟、实
验结果吻合较好,表明式 (13) 可以较好地预测不同海拔高度下炸药爆炸冲击波波阵面的运动轨迹。分
析图 9 可知,对于爆炸近场(Z<8 m/kg ),相同的传播时间内,炸药爆炸冲击波的传播距离随海拔的升
1/3
高而增大,对于爆炸远场(Z>10 m/kg ),爆炸冲击波的传播距离随海拔的升高而减小。这是由于爆炸
1/3
022301-9