Page 162 - 《软件学报》2020年第9期
P. 162

蔺一帅  等:智能仓储货位规划与 AGV 路径规划协同优化算法                                                  2783


         路径规划算法;并在以上两种算法的基础上,基于货位路径协同优化思想实现了货位路径协同优化.同时,基于
         真实仓储运维数据,本文从不同的维度、  场景分别对货位路径协同优化算法的表现情况进行实验并分析,实验
         结果表明,本文提出的智能仓储协同优化算法在算法有效性和稳定性上具有显著优势.该算法可有效提高仓储
         的出货效率,降低运输成本.
             在后续工作中,我们将在以下方面继续展开研究:(1)  本文所提出的解决方案主要针对于网格式 AGV 布局,
         在其他布局下能否适用有待进一步考察和验证;(2)  将货品的相关性、体积、质量均引入货位路径协同优化算
         法中,以此保证货架的稳定性和放置货品的效率,扩大本文所提出的货位路径协同优化算法的适用条件,使其可
         以扩展至更多的应用场景;(3)  考虑当 AGV 小车数量不充足时,即待执行的出货任务数多余可支配的 AGV 数
         量时,智能仓储协同优化算法的研究.

         References:
          [1]    Ding L,Zhang Y,Yin SC. Discussion on the development status and trends of my country's logistics and storage industry. Hoisting
             and Conveying Machinery, 2018(4):69−71 (in Chinese).
          [2]    Xu CX. Smart warehousing solutions from "people looking for goods" to "goods looking for people". China Strategic Emerging
             Industry, 2018(21):36-37 (in Chinese).
          [3]    Wu JP. Application analysis and  prospects  of  Kiva  robot  in Amazon warehouse. Logistics &  Material Handling,  2015,20(10):
             159−164 (in Chinese).
          [4]    Wang XC. Talking about the "goods to people" technology of robots in warehouse management——based on the KIVA orange
             robot of Amazon logistics center. Modern Economic Information,2017(13):78,80 (in Chinese).
          [5]    Sun C, Liang  Q,  Wang ST. Investigation  and  research on JD  warehouse  intelligent  system——Taking Shanghai "Asia  One"
             warehouse as an example. China Logistics & Purchasing, 2017(18):70−71 (in Chinese).
          [6]    Cai J, Kuang X, Song S, et al. Automated warehouse storage assignment policy based on storage frequency and workload balance.
             In: Proc. of the Int’l Conf. on Logistics, Informatics and Service Sciences. IEEE, 2017. 1−6.
          [7]    Wang WL, Gao J, Gao TY, Zhao HT. Optimization of automated warehouse location based on genetic algorithm. In: Proc. of the
             Int’l Conf. on Control, Automation and Artificial Intelligence. 2017.
          [8]    Liu F, Shi Z, Liu Y. Location assignment algorithm for AS/RS based on fuzzy mathematics. Journal of University of Shanghai for
             Science and Technology, 2011,33(1):71−74 (in Chinese with English abstract).
          [9]    Yang  W, Zhang WY, Chang YB, Qiu XH, Wang  W. Optimization  of location assignment in  AS/RS. Modern Manufacturing
             Engineering, 2014,12:134−140 (in Chinese with English abstract).
         [10]    Tinelli LM, Becker  M. Intelligent warehouse  product position  optimization  by applying a multi-criteria  tool.  In:  Proc.  of the
             Robotics in Smart Manufacturing. Berlin Heidelberg: Springer-Verlag, 2013. 137−145.
         [11]    Arnaout JP. Worm optimization for the multiple level warehouse layout problem. Annals of Operations Research, 2017,4:1−23.
         [12]    Cservenák Á.  Further  development  of an AGV control  system. In:  Proc. of  the Vehicle and Automotive Engineering  2. Cham:
             Springer-Verlag, 2018.
         [13]    Zhang B,  Li LW,  Zhao YH,  et  al.  The research on  E-commerce logistics  picking  AGV path optimization  method based on the
             improved A* algorithm. In: Proc. of the Int’l Conf. on Cybernetics, Robotics and Control. IEEE, 2017. 99−103.
         [14]    Jiang K, Sun HY, He  QC.  Research on AGV scheduling strategy  assembly workshop  considering  with distributing  area layout.
             Modular Machine Tool & Automatic Manufacturing Technique, 2013,10:141−144 (in Chinese with English abstract).
         [15]    Zhang SY, Yang YS, Liang CJ, Xu BW, Li JJ. Optimal control of multiple AGV path conflict in automated terminals. Journal of
             Transportation Systems Engineering and Information Technology, 2017, 17(2):83−89 (in Chinese with English abstract).
         [16]    Bilge Ü, Ulusoy G. A time window approach to simultaneous scheduling of machines and material handling system in an FMS.
             Operations Research, 2017,43(6):1058−1070.
         [17]    Mousavi  M,  Yap  HJ, Musa SN,Tahriri F,  Dawal SZM.  Multi-Objective  AGV scheduling in  an FMS using  a hybrid of genetic
             algorithm and particle swarm optimization. Plos One, 2017,12(3):e0169817.
         [18]    Hillis WD. Co-Evolving parasites improve simulated evolution as an optimization procedure. Physica D, 1990,42(1-3):228−234.
         [19]    Shi Y, Teng H, Li Z. Cooperative co-evolutionary differential evolution for function optimization. In: Proc. of the Int’l Conf. on
             Natural Computation. Berlin Heidelberg: Springer-Verlag, 2005.
         [20]    Wang, YS,  Teng HF,  Shi YJ. Cooperative co-evolutionary scatter  search  for  satellite module  layout  design. Engineering
             Computations, 2009,26(7):761−785.
         [21]    Huo JZ, Teng HF, Sun W, et al. Human-Computer co-operative co-evolutionary method and its application to a satellite module
             layout design problem. The Aeronautical Journal, 2010,114(1154):209−223.
   157   158   159   160   161   162   163   164   165   166   167