Page 64 - 《软件学报》2020年第12期
P. 64

3730                                Journal of Software  软件学报 Vol.31, No.12, December 2020

         可得:在 10 维的 DTLZ2 测试函数上,所求得的偏好集能够很好地满足决策者的偏好,并且能很好地收敛到前沿
         上.随着目标维数的增加,ASF-PICEA-g 算法性能并未明显衰减,所求解集仍然集中在决策者感兴趣区域.
                                          4
                                                               求得的解
                                                               参考点
                                          3.5
                                          3
                                          2.5
                                         目标值  2
                                          1.5
                                          1
                                          0.5
                                          0
                                           1  2  3  4  5 目标数 6  7  8  9  10
                     (a) g-NSGA-II                          (b) r-NSGA-II                         (c) ASF-PICEA-g

                          Fig.13    Attainment surface of the algrithms with 10 objects for DTLZ2
                  图 13   g-NSGA-II,r-NSGA-II 和 ASF-PICEA-g 在 10 维 DTLZ2 测试函数上的测试结果

         4    总结与展望

             为了减少决策者在处理高维目标问题的认知负担,本文利用 ASF 扩展函数将参考点映射到目标空间,将映
         射点作为决策者偏好表达的一种方式,同时利用偏好区域选择策略和协同进化机制,构建决策者感兴趣区域,进
         而提出基于多偏好引导的协同进化多目标优化算法(ASF-PICEA-g).实验结果表明:ASF-PICEA-g 在 WFG 系列
         测试函数上整体优于对比算法;在 DTLZ1,DTLZ3 这类复杂多模态测试函数上,本文所提算法略优于其他对比
         算法,在简单连续单模态的 DTLZ2,DTLZ4 测试函数上优于对比算法,尤其在 10 维以上目标空间中,ASF-
         PICEA-g 表现出更好的稳定性,能够有效引导种群朝偏好区域快速收敛,所求解集质量更高.对于高维目标优化
         算法而言,如何正确有效表达决策者的偏好信息仍存在较大的研究空间.未来我们将继续在高维目标优化算法
         中,进一步探索如何有效地融入决策者的信息,在提高算法精度的同时,也进一步提高算法基于偏好信息求解的
         收敛速度.


         References:
          [1]    Zhou A, Qu BY, Li H, et al. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
             Computation, 2011,1(1):32−49.
          [2]    Giagkiozis I, Purshouse  RC, Fleming PJ.  An overview of population-based  algorithms for  multi-objective  optimisa-tion
             optimisation. Int’l Journal of Systems Science, 2015,46(9):1572−1599.
          [3]    Coello Coello CA. Twenty years of evolutionary multi-objective optimization: A historical view of the field. IEEE Computational
             Intelligence Magazine, 2006,1(1):28−36.
          [4]    Deb K, Pratap A, Agarwal S,  et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary
             Computation, 2002,6(2):182−197.
          [5]    Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In:
             Proc. of the Eurogen 2001 Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems.
             Athens, 2001.
          [6]    Knowles JD,  Corne DW.  Approximating the nondominated front using the Pareto  archived  evolution  strategy.  Evolutionary
             Computation, 2006,8(2):149−172.
          [7]    Kong WJ, Ding JL, Chai TY. Survey on large-dimensional multi-objective evolutionary algorithm. Control and Decision, 2010,
             25(3):321−326 (in Chinese with English abstract).
          [8]    Trivedi A, Srinivasan D, Sanyal K, et al. A survey of multi-objective evolutionary algorithms based on decomposition. IEEE Trans.
             on Evolutionary Computation, 2017,21(3):440−462.
          [9]    Fleming PJ, Purshouse RC, Lygoe RJ. Many-objective optimization: An engineering design perspective. LNCS, 2005,3410:14−32.
   59   60   61   62   63   64   65   66   67   68   69