Page 302 - 《软件学报》2020年第10期
P. 302
3278 Journal of Software 软件学报 Vol.31, No.10, October 2020
[9] Xin SQ, He Y, Fu CW. Efficiently computing exact geodesic loops within finite steps. IEEE Trans. on Visualization and Computer
Graphics, 2012,18(6):879−889.
[10] Liu B, Chen S, Xin SQ, et al. An optimization-driven approach for computing geodesic paths on triangle meshes. Computer-Aided
Design, 2017,90:105−112.
[11] Wang X, Fang Z, Wu J, Xin SQ, et al. Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces.
Computer Aided Geometric Design, 2017,52:262−284.
[12] Hofer M, Pottmann H. Energy-minimizing splines in manifolds. ACM Trans. on Graphics, 2004,23(3):284−293.
[13] Hofer M. Constrained optimization with energy-minimizing curves and curve networks: A survey. In: Proc. of the 23rd ACM
Spring Conf. on Computer Graphics. 2007. 27−35.
[14] Pottmann H, Hofer M. A variational approach to spline curves on surfaces. Computer Aided Geometric Design, 2005,22(7):
693−709.
[15] Lee Y, Lee S. Geometric snakes for triangular meshes. Computer Graphics Forum, 2002,21(3):229−238.
[16] Brandt C, Seidel HP, Hildebrandt K. Optimal spline approximation via ℓ0-minimization. Computer Graphics Forum, 2015,34(2):
617−626.
[17] Yan Z, Schiller S, Wilensky G, Carr N, Schaefer S. k-curves: Interpolation at local maximum curvature. ACM Trans. on Graphics,
2017,36(4):129.
[18] Renner G, Weiss V. Exact and approximate computation of B-spline curves on surfaces. Computer-Aided Design, 2004,36(4):
351−362.
[19] Song HC, Yong JH, Yang YJ, Liu XM. Algorithm for orthogonal projection of parametric curves onto B-spline surfaces.
Computer-Aided Design, 2011,43(4):381−393.
[20] Grohs P. Quasi-interpolation in Riemannian manifolds. IMA Journal of Numerical Analysis, 2013,33(3):849−874.
[21] Wallner J, Pottmann H. Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. on Graphics, 2006,25(2):
356−374.
[22] Morera DM, Velho L, Carvalho PC. Subdivision curves on triangular meshes. In: Proc. of the 13th Ibero-American Congress on
Pattern Recognition. 2008.
[23] Sarlabous JE, Mederos VH, Morera DM, Velho L, Gil NL. Conic-like subdivision curves on surfaces. The Visual Computer, 2012,
28(10):971−982.
[24] Bock K, Stiller J. Energy-minimizing curve fitting for high-order surface mesh generation. Applied Mathematics, 2014,5(21):3318.
[25] Panozzo D, Baran I, Diamanti O, Sorkine-Hornung O. Weighted averages on surfaces. ACM Trans. on Graphics, 2013,32(4):60.
[26] Jung M, Kim H. Snaking across 3D meshes. In: Proc. of the 12th IEEE Pacific Conf. on Computer Graphics and Applications. 2004.
87−93.
[27] Benhabiles H, Lavoue G, Vandeborre JP, Daoudi M. Learning boundary edges for 3D-mesh segmentation. Computer Graphics
Forum, 2011,30(8):2170−2182.
[28] Wu C, Tai X. A level set formulation of geodesic curvature flow on simplicial surfaces. IEEE Trans. on Visualization and
Computer Graphics, 2010,16(4):647−662.
[29] Zhang J, Wu C, Cai J, et al. Mesh snapping: Robust interactive mesh cutting using fast geodesic curvature flow. Computer
Graphics Forum, 2010,29(2):517−526.
[30] Lee Y, Lee S, Shamir A, et al. Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design, 2005,22(5):
444−465.
[31] Zhu WM, Deng JS, Chen FL. Constructing subdivision curves on manifolds using conformal mapping. Journal of Computer-Aided
Design & Computer Graphics, 2007,19(1):48−53 (in Chinese with English abstract).
[32] Liu B, Huang CB, Lin JY, et al. Pattern of spline curves on meshes. Journal of Mechanical Engineering, 2013,49(21):140−147 (in
Chinese with English abstract).
[33] Levy B, Zhang H. Elements of geometry processing. In: Proc. of the ACM SIGGRAPH Asia Courses. 2011. 1−48.
[34] Liu L, Zhang L, Xu Y, et al. A local/global approach to mesh parameterization. Computer Graphics Forum, 2008,27(5):1495−1504.
[35] Schneider P, Eberly DH. Geometric Tools for Computer Graphics. Elsevier, 2002. 485−488.