Page 46 - 《摩擦学学报》2021年第6期
P. 46
第 6 期 樊文欣, 等: 载荷和转速对铜合金材料摩擦磨损性能的影响 831
系数增大. 摩擦温度较高时,材料的软化、氧化物和分 尔滨工业大学, 2017].
子吸附作用导致摩擦系数小幅减小. [ 8 ] Liu Jiliang, Liao Ridong, Xie Guoxin, et al. Tribological properties
of CrN coating deposited on 20CrMo against tin bronze[J]. Science
b.当载荷和转速的增大时,三种滑动轴承铜合金
China Technological Sciences, 2018, 61(11): 1713–1722. doi: 10.
材料的磨损率大小依次为Cu9Ni6Sn<CuZn31Si1<
1007/s11431-018-9239-7.
QSn7-0.2. 载荷和转速的增大加重了摩擦表面粗糙峰
[ 9 ] Shang Quanbo. The tribological properties of tin bronze dimple
的犁沟作用和摩擦热累积,从而增大磨损率;摩擦热 textured surface[D]. Ningbo: Ningbo University, 2017 (in Chinese)
的软化和氧化物的产生起到减磨润滑的作用,减小了 [商权波. 锡青铜凹坑织构表面的摩擦磨损性能研究[D]. 宁波: 宁
磨损. 材料硬度和机械强度过大易出现裂纹,过小易 波大学, 2017].
发生塑性变形. [10] Tavakoli A, Liu R, Wu X J. Improved mechanical and tribological
c.当载荷增大时,QSn7-0.2由磨粒磨损逐渐加剧 properties of tin-bronze journal bearing materials with newly
developed tribaloy alloy additive[J]. Materials Science and
转变为黏着磨损;CuZn31Si1由塑性变形磨损加重伴
Engineering: A, 2008, 489(1-2): 389–402. doi: 10.1016/j.msea.2007.
有轻微的磨粒磨损转变为磨粒和黏着磨损;Cu9Ni6Sn
12.030.
由轻微的磨粒和塑性变形磨损转变为疲劳磨损. 当转 [11] Equey S, Houriet A, Mischler S. Wear and frictional mechanisms of
速增大时,QSn7-0.2由塑性变形磨损加重转变为黏着 copper-based bearing alloys[J]. Wear, 2011, 273(1): 9–16. doi: 10.
磨损,整个过程伴随着轻微的磨粒磨损;CuZn31Si1由 1016/j.wear.2011.03.030.
磨粒磨损转变为塑性变形磨损;Cu9Ni6Sn由轻微的磨 [12] Tang C, Wang J M, Wen G W, et al. Bauschinger effect in wear of
Cu-40Zn alloy and its variations with the wear condition[J]. Wear,
粒磨损转变为磨粒磨损与塑性变形磨损共存.
2011, 271(9-10): 9–10. doi: 10.1016/j.wear.2010.11.026.
参 考 文 献
[13] Cho I S, Amanov A, Ahn D G, et al. Wear behavior of Cu-Zn alloy
[ 1 ] Kovalchenko A M, Fushchich O I, Danyluk S. The tribological by ultrasonic nanocrystalline surface modification[J]. Journal of
properties and mechanism of wear of Cu-based sintered powder Nanoscience and Nanotechnology, 2011, 11(7): 6443–6447. doi: 10.
materials containing molybdenum disulfide and molybdenum 1166/jnn.2011.4419.
diselenite under unlubricated sliding against copper[J]. Wear, 2012, [14] Wang Yan, Zhang Lei, Xiao Jinkun, et al. The tribo-corrosion
290–291: 106–123. doi: 10.1016/j.wear.2012.05.001. behavior of Cu-9wt% Ni-6 wt% Sn alloy[J]. Tribology International,
[ 2 ] Ünlü B S. Investigation of tribological and mechanical properties of 2016, 94: 260–268. doi: 10.1016/j.triboint.2015.06.031.
metal bearings[J]. Bulletin of Materials Science, 2009, 32(4): [15] Cai W, Mabon J, Bellon P. Crystallographic textures and texture
451–457. doi: 10.1007/s12034-009-0066-0. transitions induced by sliding wear in bronze and nickel[J]. Wear,
[ 3 ] Senthil Kumar P, Manisekar K, Subramanian E, et al. Dry sliding 2009, 267(1-4): 485–494. doi: 10.1016/j.wear.2008.11.016.
friction and wear characteristics of Cu-Sn alloy containing [16] Cai W, Bellon P. Microstructural self-organization triggered by twin
molybdenum disulfide[J]. Tribology Transactions, 2013, 56(5): boundaries during dry sliding wear[J]. Acta Materialia, 2012,
857–866. doi: 10.1080/10402004.2013.806685. 60(19): 6673–6684. doi: 10.1016/j.actamat.2012.08.037.
[ 4 ] Zhang Yongzhen. Dry tribology of materials[M]. Beijing: Science [17] Tang Hongyue. Study on the tribological properties of copper-nickel
Press, 2012 (in Chinses) [张永振. 材料的干摩擦学[M]. 北京: 科学 and copper-lead bearing materials[D]. Hefei: Hefei University of
出版社, 2012]. Technology, 2016 (in Chinese) [唐红跃. 铜镍与铜铅轴承材料的摩
[ 5 ] Wang Xue. Experimental study on tribological properties of tin 擦学性能研究[D]. 合肥: 合肥工业大学, 2016].
bronze bushing and numerical simulation of wear quantity[D]. [18] Xi Qihao. The study on power spinning QSn7-0.2 alloy
Taiyuan: North University of China, 2018 (in Chinese) [王雪. 锡青 microstructure and mechanical properties[D]. Taiyuan: North
铜衬套摩擦学性能试验研究及磨损量数值仿真[D]. 太原: 中北大 University of China, 2017 (in Chinese) [席奇豪. 强力旋压QSn7-
学, 2018]. 0.2合金微观组织与力学性能的研究[D]. 太原: 中北大学, 2017].
[ 6 ] Yang Feng. Study on friction and wear characteristics of strong [19] Zhang Yi, Chen Xiaohong, Tian Baohong, et al. Smelting,
spinning tin bronze sliding bearing[D]. Taiyuan: North University of processing and application of copper and copper alloy[M]. Beijing:
China, 2019 (in Chinese) [杨锋. 强力旋压锡青铜滑动轴承材料的 Chemical Industry Press, 2017 (in Chinses) [张毅, 陈小红, 田保红,
摩擦磨损特性研究[D]. 太原: 中北大学, 2019]. 等. 铜及铜合金冶炼、加工与应用[M]. 北京: 化学工业出版社,
[ 7 ] Shao Zhiping. Research on surface modification and tribological 2017].
behavior of M50 steel with the counter pair tin bronze[D]. Harbin: [20] Wang Yanhui, Wang Mingpu, Hong Bin. General description of Cu-
Harbin Institute of Technology, 2017 (in Chinese) [邵志平. M50钢 9Ni-6Sn alloy[J]. Materials Review, 2004, 18(5): 33–35 (in Chinese)
与锡青铜对磨副的表面改性及摩擦磨损行为研究[D]. 哈尔滨: 哈 [王艳辉, 汪明朴, 洪斌. Cu-9Ni-6Sn合金概述[J]. 材料导报, 2004,