Page 46 - 《摩擦学学报》2021年第6期
P. 46

第 6 期                     樊文欣, 等: 载荷和转速对铜合金材料摩擦磨损性能的影响                                       831

            系数增大. 摩擦温度较高时,材料的软化、氧化物和分                              尔滨工业大学, 2017].
            子吸附作用导致摩擦系数小幅减小.                                   [  8  ]  Liu Jiliang, Liao Ridong, Xie Guoxin, et al. Tribological properties
                                                                   of CrN coating deposited on 20CrMo against tin bronze[J]. Science
                b.当载荷和转速的增大时,三种滑动轴承铜合金
                                                                   China  Technological  Sciences,  2018,  61(11):  1713–1722.  doi:  10.
            材料的磨损率大小依次为Cu9Ni6Sn<CuZn31Si1<
                                                                   1007/s11431-018-9239-7.
            QSn7-0.2. 载荷和转速的增大加重了摩擦表面粗糙峰
                                                               [  9  ]  Shang  Quanbo.  The  tribological  properties  of  tin  bronze  dimple
            的犁沟作用和摩擦热累积,从而增大磨损率;摩擦热                                textured surface[D]. Ningbo: Ningbo University, 2017 (in Chinese)
            的软化和氧化物的产生起到减磨润滑的作用,减小了                                [商权波. 锡青铜凹坑织构表面的摩擦磨损性能研究[D]. 宁波: 宁
            磨损. 材料硬度和机械强度过大易出现裂纹,过小易                               波大学, 2017].

            发生塑性变形.                                            [10]  Tavakoli A, Liu R, Wu X J. Improved mechanical and tribological
                c.当载荷增大时,QSn7-0.2由磨粒磨损逐渐加剧                         properties  of  tin-bronze  journal  bearing  materials  with  newly
                                                                   developed  tribaloy  alloy  additive[J].  Materials  Science  and
            转变为黏着磨损;CuZn31Si1由塑性变形磨损加重伴
                                                                   Engineering: A, 2008, 489(1-2): 389–402. doi: 10.1016/j.msea.2007.
            有轻微的磨粒磨损转变为磨粒和黏着磨损;Cu9Ni6Sn
                                                                   12.030.
            由轻微的磨粒和塑性变形磨损转变为疲劳磨损. 当转                           [11]  Equey S, Houriet A, Mischler S. Wear and frictional mechanisms of
            速增大时,QSn7-0.2由塑性变形磨损加重转变为黏着                            copper-based bearing alloys[J]. Wear, 2011, 273(1): 9–16. doi: 10.
            磨损,整个过程伴随着轻微的磨粒磨损;CuZn31Si1由                           1016/j.wear.2011.03.030.
            磨粒磨损转变为塑性变形磨损;Cu9Ni6Sn由轻微的磨                        [12]  Tang C, Wang J M, Wen G W, et al. Bauschinger effect in wear of
                                                                   Cu-40Zn alloy and its variations with the wear condition[J]. Wear,
            粒磨损转变为磨粒磨损与塑性变形磨损共存.
                                                                   2011, 271(9-10): 9–10. doi: 10.1016/j.wear.2010.11.026.
            参 考 文 献
                                                               [13]  Cho I S, Amanov A, Ahn D G, et al. Wear behavior of Cu-Zn alloy
            [  1  ]  Kovalchenko  A  M,  Fushchich  O  I,  Danyluk  S.  The  tribological  by  ultrasonic  nanocrystalline  surface  modification[J].  Journal  of
                 properties  and  mechanism  of  wear  of  Cu-based  sintered  powder  Nanoscience and Nanotechnology, 2011, 11(7): 6443–6447. doi: 10.
                 materials  containing  molybdenum  disulfide  and  molybdenum  1166/jnn.2011.4419.
                 diselenite under unlubricated sliding against copper[J]. Wear, 2012,  [14]  Wang  Yan,  Zhang  Lei,  Xiao  Jinkun,  et  al.  The  tribo-corrosion
                 290–291: 106–123. doi: 10.1016/j.wear.2012.05.001.  behavior of Cu-9wt% Ni-6 wt% Sn alloy[J]. Tribology International,
            [  2  ]  Ünlü B S. Investigation of tribological and mechanical properties of  2016, 94: 260–268. doi: 10.1016/j.triboint.2015.06.031.
                 metal  bearings[J].  Bulletin  of  Materials  Science,  2009,  32(4):  [15]  Cai  W,  Mabon  J,  Bellon  P.  Crystallographic  textures  and  texture
                 451–457. doi: 10.1007/s12034-009-0066-0.          transitions induced by sliding wear in bronze and nickel[J]. Wear,
            [  3  ]  Senthil Kumar P, Manisekar K, Subramanian E, et al. Dry sliding  2009, 267(1-4): 485–494. doi: 10.1016/j.wear.2008.11.016.
                 friction  and  wear  characteristics  of  Cu-Sn  alloy  containing  [16]  Cai W, Bellon P. Microstructural self-organization triggered by twin
                 molybdenum  disulfide[J].  Tribology  Transactions,  2013,  56(5):  boundaries  during  dry  sliding  wear[J].  Acta  Materialia,  2012,
                 857–866. doi: 10.1080/10402004.2013.806685.       60(19): 6673–6684. doi: 10.1016/j.actamat.2012.08.037.
            [  4  ]  Zhang  Yongzhen.  Dry  tribology  of  materials[M].  Beijing:  Science  [17]  Tang Hongyue. Study on the tribological properties of copper-nickel
                 Press, 2012 (in Chinses) [张永振. 材料的干摩擦学[M]. 北京: 科学  and  copper-lead  bearing  materials[D].  Hefei:  Hefei  University  of
                 出版社, 2012].                                       Technology, 2016 (in Chinese) [唐红跃. 铜镍与铜铅轴承材料的摩
            [  5  ]  Wang  Xue.  Experimental  study  on  tribological  properties  of  tin  擦学性能研究[D]. 合肥: 合肥工业大学, 2016].
                 bronze  bushing  and  numerical  simulation  of  wear  quantity[D].  [18]  Xi  Qihao.  The  study  on  power  spinning  QSn7-0.2  alloy
                 Taiyuan: North University of China, 2018 (in Chinese) [王雪. 锡青  microstructure  and  mechanical  properties[D].  Taiyuan:  North
                 铜衬套摩擦学性能试验研究及磨损量数值仿真[D]. 太原: 中北大                  University of China, 2017 (in Chinese) [席奇豪. 强力旋压QSn7-
                 学, 2018].                                         0.2合金微观组织与力学性能的研究[D]. 太原: 中北大学, 2017].
            [  6  ]  Yang  Feng.  Study  on  friction  and  wear  characteristics  of  strong  [19]  Zhang  Yi,  Chen  Xiaohong,  Tian  Baohong,  et  al.  Smelting,
                 spinning tin bronze sliding bearing[D]. Taiyuan: North University of  processing and application of copper and copper alloy[M]. Beijing:
                 China, 2019 (in Chinese) [杨锋. 强力旋压锡青铜滑动轴承材料的      Chemical Industry Press, 2017 (in Chinses) [张毅, 陈小红, 田保红,
                 摩擦磨损特性研究[D]. 太原: 中北大学, 2019].                     等. 铜及铜合金冶炼、加工与应用[M]. 北京: 化学工业出版社,
            [  7  ]  Shao  Zhiping.  Research  on  surface  modification  and  tribological  2017].
                 behavior of M50 steel with the counter pair tin bronze[D]. Harbin:  [20]  Wang Yanhui, Wang Mingpu, Hong Bin. General description of Cu-
                 Harbin Institute of Technology, 2017 (in Chinese) [邵志平. M50钢  9Ni-6Sn alloy[J]. Materials Review, 2004, 18(5): 33–35 (in Chinese)
                 与锡青铜对磨副的表面改性及摩擦磨损行为研究[D]. 哈尔滨: 哈                  [王艳辉, 汪明朴, 洪斌. Cu-9Ni-6Sn合金概述[J]. 材料导报, 2004,
   41   42   43   44   45   46   47   48   49   50   51