Page 210 - 《摩擦学学报》2021年第6期
P. 210

第 41 卷     第 6 期                        摩  擦  学  学  报                                  Vol 41   No 6
            2021  年 11  月                                Tribology                                   Nov, 2021

            DOI: 10.16078/j.tribology.2021109



                         表面织构与离子液体润滑组合体系的

                                             摩擦学性能研究




                                                           2
                                                  2
                                         1
                                                                            3
                                                                    1
                                  周鑫鑫 , 逄显娟 , 岳世伟 , 张玉言 , 张  浩 , 于  波               1,2,3*
                                       (1. 南京林业大学 机械电子工程学院, 江苏 南京 210037;
                          2. 河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室, 河南 洛阳 471023;
                                            3. 南京林业大学 理学院, 江苏 南京 210037)
                摘   要: 利用激光加工技术在钛合金表面构建不同尺寸的圆形微坑织构图案. 利用MS-T3001型试验机测试了圆形
                微坑织构、离子液体[1-丁基-3-甲基咪唑三氟甲基磺酰胺盐和十四烷基三丁基季鏻双(2-乙基己基)磷酸盐]及二者构
                成润滑组合的摩擦磨损性能. 利用金相显微镜观察圆形微坑织构的尺寸和表面形貌,利用扫描电镜分析摩擦过程前
                后织构化表面的形貌,采用ANSYS Fluent软件模拟分析表面织构参数和离子液体理化性质对摩擦学性能的影响.
                结果表明,表面织构、离子液体、表面织构与离子液体的复合体系均展示了良好的减摩抗磨性能. 优化表面织构与
                离子液体的组合能够提升润滑体系的摩擦学性能. 表面织构与离子液体组成的复合润滑体系,摩擦系数随圆形微坑
                织构直径的增大而减小,归因于圆形微坑织构能够储存磨屑和离子液体并形成稳定的离子液体润滑薄膜,黏度较
                大的离子液体在收敛区间产生楔形效应,导致对上摩擦副升力增大.
                关键词: 表面织构; 离子液体; 润滑组合; 钛合金; 仿真
                中图分类号: TH117.1                  文献标志码: A                   文章编号: 1004-0595(2021)06–0995–09



                          Tribological Properties of Combination of Surface
                                           Texture and Ionic Liquids



                                                             2
                                                 2
                                                                                         3
                                 1
                                                                            1
                     ZHOU Xinxin , PANG Xianjuan , YUE Shiwei , ZHANG Yuyan , ZHANG Hao , YU Bo  1,2,3*
                   (1. College of Mechenical and Electrical Engineering, Nanjing Forestry University, Jiangsu Nanjing 210037, China
                     2. National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and
                                             Technology, Henan Luoyang 471023, China
                              3. College of Science, Nanjing Forestry University, Jiangsu Nanjing 210037, China)
                 Abstract: Titanium alloys have been widely used in engineering fields due to their high corrosion resistance, good
                 toughness and specific strength and many other excellent properties. However, titanium alloys are especially sensitive to
                 adhesive wear with poor wear resistance under higher loads. In past several decades, many researchers have found that
                 the textured surface can improve tribological performance, which is suitable for severe working environments. The
                 influence of surface texture on the tribological properties mainly depends on various factors such as texture shape, depth
                 and size parameters and processing accuracy. In past twenty years, ionic liquids have been extensively and intensively


            Received 2 June 2021, revised 12 July 2021, accepted 19 July 2021, available online 28 November 2021.
            *Corresponding author. E-mail: boyu@njfu.edu.cn, Tel: +86-13675153195.
            The project was supported by the National Natural Science Foundation of China(51775282, 51805269), Opening Project of National
            United Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology (201902) and the Natural Science
            Foundation of Henan Province (202300410141).
            国家自然科学基金项目(51775282,51805269), 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室开放课题
            项目(201902)和河南省自然科学基金项目(202300410141)资助.
   205   206   207   208   209   210   211   212   213   214   215