Page 14 - 《摩擦学学报》2021年第6期
P. 14
第 6 期 廖章文, 等: 冰雪滑动摩擦研究现状及发展趋势 799
[ 8 ] Salzmann C G. Advances in the experimental exploration of water's nanocapillaries[J]. Nature, 2015, 519(7544): 443–445. doi: 10.1038/
phase diagram[J]. The Journal of Chemical Physics, 2019, 150(6): nature14295.
060901. doi: 10.1063/1.5085163. [23] Kietzig A M, Hatzikiriakos S G, Englezos P. Physics of ice
[ 9 ] Ma R, Cao D, Zhu C, et al. Atomic imaging of the edge structure friction[J]. Journal of Applied Physics, 2010, 107(8): 081101. doi:
and growth of a two-dimensional hexagonal ice[J]. Nature, 2020, 10.1063/1.3340792.
577(7788): 60–63. doi: 10.1038/s41586-019-1853-4. [24] Makkonen L, Tikanmäki M. Modeling the friction of ice[J]. Cold
[10] Shimada W, Ohtake K. Three-dimensional morphology of natural Regions Science and Technology, 2014, 102: 84–93. doi: 10.1016/j.
snow crystals[J]. Crystal Growth & Design, 2016, 16(10): coldregions.2014.03.002.
5603–5605. doi: 10.1021/acs.cgd.6b01263. [25] Marmo B A, Blackford J R, Jeffree C E. Ice friction, wear features
[11] Shimada W, Yoshii T, Mochizuki A, et al. Three-dimensional and their dependence on sliding velocity and temperature[J]. Journal
aspects of sidebranch formation during the growth of snow of Glaciology, 2005, 51(174): 391–398. doi: 10.3189/17275650578
crystals[J]. Journal of Crystal Growth, 2020, 548: 125846. doi: 10. 1829304.
1016/j.jcrysgro.2020.125846. [26] Slotfeldt-Ellingsen D, Torgersen L. Water on ice; influence on
[12] Libbrecht K G. Toward a Comprehensive Model of Snow Crystal friction[J]. Journal of Physics D:Applied Physics, 1983, 16(9):
Growth: 6. Ice Attachment Kinetics near-5 C[J]. arXiv preprint 1715–1719. doi: 10.1088/0022-3727/16/9/017.
arXiv: 1912.03230, 2019. [27] Persson B N J. Ice friction: Role of non-uniform frictional heating
[13] Bartels-Rausch T. Ten things we need to know about ice and and ice premelting[J]. The Journal of Chemical Physics, 2015,
snow[J]. Nature, 2013, 494(7435): 27–29. doi: 10.1038/494027a. 143(22): 224701. doi: 10.1063/1.4936299.
[14] Libbrecht K G. Physical dynamics of ice crystal growth[J]. Annual [28] Theile T, Szabo D, Luthi A, et al. Mechanics of the ski-snow
Review of Materials Research, 2017, 47(1): 271–295. doi: 10.1146/ contact[J]. Tribology Letters, 2009, 36(3): 223–231. doi: 10.1007/
annurev-matsci-070616-124135. s11249-009-9476-9.
[15] Libbrecht K G. Morphogenesis on ice: The physics of snow [29] Salimi S, Nassiri S, Bayat A, et al. Lateral coefficient of friction for
crystals[J]. Engineering and Science, 2001, 64(1): 10–19. characterizing winter road conditions[J]. Canadian Journal of Civil
[16] Wickert D, Prokop G. Simulation of water evaporation under natural Engineering, 2016, 43(1): 73–83. doi: 10.1139/cjce-2015-0222.
conditions —A state-of-the-art overview[J]. Experimental and [30] Ella S, Formagne P Y, Koutsos V, et al. Investigation of rubber
Computational Multiphase Flow, 2021, 3(4): 242–249. doi: 10.1007/ friction on snow for tyres[J]. Tribology International, 2013, 59:
s42757-020-0071-5. 292–301. doi: 10.1016/j.triboint.2012.01.017.
[17] Tanaka H. Bond orientational order in liquids: Towards a unified [31] Spagni A, Berardo A, Marchetto D, et al. Friction of rough surfaces
description of water-like anomalies, liquid-liquid transition, glass on ice: Experiments and modeling[J]. Wear, 2016, 368-369:
transition, and crystallization: Bond orientational order in liquids[J]. 258–266. doi: 10.1016/j.wear.2016.10.001.
The European Physical Journal E, 2012, 35(10): 113. doi: 10.1140/ [32] Kietzig A M, Hatzikiriakos S G, Englezos P. Ice friction: The effects
epje/i2012-12113-y. of surface roughness, structure, and hydrophobicity[J]. Journal of
[18] Li Fabing, Li Zhanlong, Men Zhiwei, et al. Analysis of hydrogen Applied Physics, 2009, 106(2): 024303. doi: 10.1063/1.3173346.
bond structure in ice ih surface of film with Raman spectra[J]. [33] Rohm S, Hasler M, Knoflach C, et al. Friction between steel and
Spectroscopy and Spectral Analysis, 2017, 37(6): 1683–1686 snow in dependence of the steel roughness[J]. Tribology Letters,
(in Chinese) [李发兵, 李占龙, 门志伟, 等. 利用拉曼光谱分析冰 2015, 59(1): 1–8. doi: 10.1007/s11249-015-0554-x.
Ih相的表面薄层的氢键结构[J]. 光谱学与光谱分析, 2017, 37(6): [34] Lever J H, Taylor S, Song A J, et al. The mechanics of snow friction
1683–1686]. as revealed by micro-scale interface observations[J]. Journal of
[19] Murray B J, Knopf D A, Bertram A K. The formation of cubic ice Glaciology, 2018, 64(243): 27–36. doi: 10.1017/jog.2017.76.
under conditions relevant to Earth's atmosphere[J]. Nature, 2005, [35] Lever J H, Taylor S, Hoch G R, et al. Evidence that abrasion can
434(7030): 202–205. doi: 10.1038/nature03403. govern snow kinetic friction[J]. Journal of Glaciology, 2019,
[20] Komatsu K, Machida S, Noritake F, et al. Ice Ic without stacking 65(249): 68–84. doi: 10.1017/jog.2018.97.
disorder by evacuating hydrogen from hydrogen hydrate[J]. Nature [36] Döppenschmidt A, Butt H J. Measuring the thickness of the liquid-
Communications, 2020, 11(1): 464. doi: 10.1038/s41467-020- like layer on ice surfaces with atomic force microscopy[J].
14346-5. Langmuir, 2000, 16(16): 6709–6714. doi: 10.1021/la990799w.
[21] Rosso L D, Celli M, Grazzi F, et al. Cubic ice Ic without stacking [37] Ortiz-Young D, Chiu H C, Kim S, et al. The interplay between
defects obtained from ice XVII[J]. Nature Materials, 2020, 19(6): apparent viscosity and wettability in nanoconfined water[J]. Nature
663–668. doi: 10.1038/s41563-020-0606-y. Communications, 2013, 4(9): 2482. doi: 10.1038/ncomms3482.
[22] Algara-Siller G, Lehtinen O, Wang F C, et al. Square ice in graphene [38] Canale L, Comtet J, Niguès A, et al. Nanorheology of interfacial