Page 30 - 《真空与低温》2025年第4期
P. 30

第  31 卷    第  4 期                          真空与低温
                 2025 年 7 月                           Vacuum and Cryogenics                                445



                     液   氢  增   压   泵   低  压   端   活   塞  迷   宫   密   封   瞬  态   泄   漏   数  值   研   究



                                                                           1*
                                        任宏宇     1,2 ,吴 畏   1,2 ,杨少柒 ,谢秀娟 ,谢宁宁       3
                                                                   1
                  (1. 中国科学院理化技术研究所  低温科学与技术国家重点实验室,北京 100190;2. 中国科学院
                        大学,北京 100049;3. 中国长江三峡集团有限公司科学技术研究院,北京 101199)


                     摘要:氢是一种理想的能源载体,在储能、发电、交通运输和工业生产领域都有着广泛的应用。在交通运输
                  领域,加氢站是上游制氢端到下游氢能应用终端之间的中间环节,起到了氢气存储加注的功能。相较于高压气态
                  储氢加氢站,液氢加氢站在安全性、氢气纯度、加氢站前期建设成本、兼容性以及能耗等方面均具有明显的优势。
                  液氢增压泵是液氢加氢站的核心部件,为了维持液氢增压泵的高效运行,需要对其进行良好的活塞和柱塞密封。
                  在液氢增压泵运行过程中存在来自环境的漏热和活塞密封环摩擦生热。这些热量会使液氢发生相变转化为气氢,
                  造成蒸发损失,使得泵的运行效率降低。相比于活塞密封环,迷宫密封作为一种非接触的密封形式,具有结构简
                  单、低磨损和摩擦生热少等优点,可以有效降低泵运行过程中的内部生热。论文采用了一种新型液氢增压泵低压
                  端活塞结构,该新型结构将传统低压端活塞、低压端入口阀和活塞迷宫密封集成其中。结合动态网格技术建立了
                  液氢增压泵低压端活塞迷宫密封瞬态泄漏模型,探究了活塞往复运动、迷宫密封长度和中间压力对活塞迷宫密封
                  泄漏系数的影响。结果表明,由于近壁面剪切流和活塞挤压作用的耦合影响,活塞往复运动在一定程度上增大了
                  迷宫密封整体泄漏量;迷宫密封长度增大有助于降低密封泄漏量,但优化程度有限;两级液氢增压泵的中间压力
                  越大,迷宫密封的泄漏量也就越大。
                     关键词:液氢增压泵;低压端活塞;迷宫密封;瞬态泄漏特性;动网格
                     中图分类号:TB655                     文献标志码:A       文章编号:1006−7086(2025)04−0445−09
                     DOI:10.12446/j.issn.1006-7086.2025.04.004


                     Numerical Investigation of Transient Leakage in Labyrinth Seals for Low-pressure Pistons of
                                                Liquid Hydrogen Booster Pumps


                                            1,2       1,2          1           1*          3
                                 REN Hongyu ,WU Wei ,YANG Shaoqi ,XIE Xiujuan ,XIE Ningning
                 (1. State Key Laboratory of Cryogenic Science and Technology,Technical Institute of Physics and Chemistry,Chinese
                 Academy of Sciences,Beijing 100190,China;2. University of Chinese Academy of Sciences,Beijing 100049,China;
                         3. China Three Gorges Corporation Institute of Science and Technology,Beijing 101199,China)


                     Abstract:Hydrogen is recognized as an ideal energy carrier with extensive applications in energy storage,power gener-
                  ation,transportation,and industrial production. In the transportation sector,hydrogen refueling stations serve as critical in-
                  frastructure  connecting  upstream  hydrogen  production  and  downstream  hydrogen  utilization  terminals, fulfilling  essential
                  functions of hydrogen storage and dispensing. Compared to high-pressure gaseous hydrogen storage refueling stations,liquid
                  hydrogen refueling stations demonstrate significant advantages across multiple parameters including operational safety,hy-
                  drogen  purity, initial  construction  costs, system  compatibility, and  energy  consumption  efficiency.  The  liquid  hydrogen
                  booster pump serves as a core component in hydrogen refueling stations. To maintain its efficient operation,effective sealing
                  of pistons and plungers is crucial. During the operation of liquid hydrogen booster pumps,heat leakage from the environment
                  and frictional heating from piston seal rings constitute significant thermal inputs. These heat sources induce phase transforma-
                  tion of liquid hydrogen into gas hydrogen,resulting in evaporation losses that substantially reduce operational efficiency. In
                  contrast to piston seal rings,labyrinth seals as non-contact sealing mechanism demonstrate notable advantages including sim-
                  plified structural configuration,reduced wear characteristics,and minimal frictional heating generation. This innovative seal-


              收稿日期:2025−03−31
              基金项目:国家重点研发计划项目(2022YFB4002801);中国长江三峡集团有限公司科研项目 (202103391)
              作者简介:任宏宇,硕士研究生。E-mail:renhongyu221@mails.ucas.ac.cn
              通信作者:谢秀娟,研究员,博士生导师。E-mail:xiexiujuan@mail.ipc.ac.cn
   25   26   27   28   29   30   31   32   33   34   35