Page 21 - 《真空与低温》2025年第3期
P. 21

真空与低温                                 第  31 卷    第  3 期
              292                                     Vacuum and Cryogenics                       2025 年 5 月



                   背   栅  型   纳   米   真   空  沟   道   晶   体  管   阵   列   的  电   学   特   性  及   其   高   频

                                          小  信   号   等   效  电   路   模   型  研   究



                                                         1
                                        1
                                                 1
                                                                          1
                                                                                  2*
                                                                 1
                                 陈越中 ,赵浩东 ,俞道龙 ,刘志霞 ,汪正义 ,王雨薇 ,徐 季                         3*
                            (1. 南京信息工程大学  电子与信息工程学院,南京 210000;2. 湖南大学
                     电气与信息工程学院,长沙 410082;3. 南京信息工程大学 集成电路学院,南京 210000)
                     摘要:在后摩尔时代,传统固态电子器件面临着由于尺寸压缩而触及物理极限的挑战。而与固态器件工作机
                  制截然不同的纳米真空沟道晶体管(NVCTs),成为新一代最具潜力的电子器件之一,其低功耗、高可靠性的特性,
                  引起了研究者的广泛关注。由于单阴极结构的                 NVCTs 通常表现出较小的工作电流,将其扩展为阵列结构是一种
                  有效提高工作电流的方式。本文基于背栅型晶体管结构设计,提出了一种背栅型纳米真空沟道晶体管阵列,并深
                  入研究了其电学特性;具体探讨了阴极阵列中发射尖端间距对发射特性的影响,以及栅极介质层厚度和材料(特
                  别是高   k 材料)等潜在因素对其电学特性的影响。并提出了两种基于纳米真空沟道晶体管阵列的高频小信号等
                  效电路模型:共阴极高频小信号等效电路和共栅极高频小信号等效电路。这些研究为纳米真空沟道晶体管在新
                  一代电子器件中的应用提供了新的思路和参考。
                     关键词:纳米真空沟道晶体管;电学特性;高频小信号等效电路
                     中图分类号:TB71                      文献标志码:A       文章编号:1006−7086(2025)03−0292−10
                     DOI:10.12446/j.issn.1006-7086.2025.03.002

                  Electrical Characteristics and High-frequency Small-signal Equivalent Circuit Model of Back-gated
                                          Nanoscale Vacuum Channel Transistor Arrays


                                                                                    1
                                                                                                 2*
                                                                      1
                                                 1
                                                            1
                                   1
                     CHEN Yuezhong ,ZHAO Haodong ,YU Daolong ,LIU Zhixia ,WANG Zhengyi ,WANG Yuwei ,XU Ji  3*
                  (1. School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,
              Nanjing 210000,China;2. College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;
                 3. School of Integrated Circuits,Nanjing University of Information Science and Technology,Nanjing 210000,China)
                     Abstract:In the post-Moore era,traditional solid-state electronic devices face the challenge of reaching physical limits
                  due to size reduction. In contrast,nanoscale vacuum channel transistors (NVCTs),which operate based on a mechanism fun-
                  damentally different from that of solid-state devices,have emerged as one of the most promising electronic devices for the
                  next generation. Their low power consumption and high reliability have attracted significant attention from researchers. How-
                  ever,NVCTs with a single cathode structure typically demonstrate low operating currents,and extending them into an array
                  structure has been identified as an effective method for enhancing the operating current. Based on a back-gate transistor struc-
                  ture,a back-gate nanoscale vacuum channel transistor array is proposed in this study,and its electrical characteristics are sys-
                  tematically investigated through parametric optimization. The systematic investigation focuses on three critical design para-
                  meters governing device performance:Firstly,emission tip spacing within cathode arrays is optimized to minimize the elec-
                  tric field shielding effect. Secondly,gate dielectric layer thickness is correlated with electrostatic control performance,reveal-
                  ing  thickness-dependent  performance  tradeoffs.  Thirdly, the  effect  of  High-k  dielectric  materials  applied  to  our  proposed


              收稿日期:2024−12−10
              基金项目:国家自然科学基金 (92264103,62401399);国家重点研发计划课题 (2022YFB4401301)
              作者简介:陈越中,硕士研究生。E-mail:202312180040@nuist.edu.cn
                      赵浩东,硕士研究生,本文共同第一作者。E-mail:202412492717@nuist.edu.cn
              通信作者:王雨薇,博士,副教授。E-mail:yuweiwang@hnu.edu.cn
                      徐季,博士,副教授。E-mail:003397@nuist.edu.cn
   16   17   18   19   20   21   22   23   24   25   26