Page 19 - 《真空与低温》2025年第3期
P. 19

290                                         真空与低温                                   第 31 卷 第  3  期


                  100(21):213505.                                   radiation  operation[J].  Advanced  Science, 2024, 11(33):
              [18]   ZHAO S H,DING H,LI X Q,et al. The selection and de-  2310300.
                  sign  of  electrode  materials  for  field  emission  devices[J].  [31]   ZHAO D S,LIU R,FU K,et al. An Al 0.25 Ga 0.75 N/GaN later-
                  Materials Science in Semiconductor Processing,2023,167:  al field emission device with a nano void channel[J]. Chi-

                  107804.                                           nese Physics Letters,2018,35(3):038103.
              [19]   LIU M,YANG Y,LI T,et al. Low voltage field emission of  [32]   HERNANDEZ  N, CAHAY  M, O'MARA  J, et  al.  Field
                  single Cu nanowire in air with nanoscale gaps for vacuum  emission characteristics of AlGaN/GaN nanoscale lateral va-
                  electronics[J]. Micro & Nano Letters,2017,12(11):897−  cuum diodes[J]. Journal of Applied Physics,2024,135(20):
                  900.                                              204305.
              [20]   NIRANTAR S,PATIL B,TRIPATHI D C,et al. Metal-air  [33]   HAN J W,SEOL M L,MOON D I,et al. Nanoscale vacuum
                  field emission devices - nano electrode geometries compari-  channel  transistors  fabricated  on  silicon  carbide  wafers[J].
                  son  of  performance  and  stability[J].  Small, 2022, 18(47):  Nature Electronics,2019,2(9):405−411.
                  2203234.                                      [34]   TANG M L,MA C C,LIU L N,et al. β-Ga 2 O 3  Air-channel
              [21]   JIN H S,HEE S J,OK J B,et al. Vacuum tunneling transis-  field-emission nanodiode with ultrahigh current density and
                  tor with nano vacuum chamber for harsh environments[J].  low turn-on voltage[J]. Nano Letters,2024,24(5):1769−
                  ACS Nano,2023,17(20):19696−19708.                 1775.
              [22]   HAN  J  W, OH  J  S, MEYYAPPAN  M.  Cofabrication  of  [35]   HSU S H,KANG W P,RAINA S,et al. Nanodiamond vac-
                  vacuum field emission transistor (VFET) and MOSFET[J].  uum field emission microtriode[J]. Journal of Vacuum Sci-
                  IEEE Trans Nanotechnol,2014,13(3):464−468.        ence & Technology B,2017,35(3):032201.
              [23]   LIU M,LIANG S T,SHI D F,et al. An emission stable ver-  [36]   SUBRAMANIAN  K, KANG  W  P, DAVIDSON  J  L.  A
                  tical air channel diode by a low-cost and IC compatible BOE  Monolithic nanodiamond lateral field emission vacuum tran-
                  etching process[J]. Nanoscale,2021,13(11):5693−5699.  sistor[J].  IEEE  Electron  Device  Letters, 2008, 29(11):
              [24]   WANG Y W,XIANG L,YANG W,et al. High-performa-  1259−1261.
                  nce on-chip thermionic electron micro-emitter arrays based  [37]   KANG W P,DAVIDSON J L,SUBRAMANIAN K,et al.
                  on super-aligned carbon nanotube films[J]. Advanced Func-  Nanodiamond lateral VFEM technology for harsh environ-
                  tional Materials,2020,30(7):1907814.              ments[J].  IEEE  Transactions  on  Nuclear  Science, 2007,
              [25]   WANG A W,ZHAO J Z,CHEN K,et al. Ultracoherent sin-  54(4):1061−1065.
                  gle-electron  emission  of  carbon  nanotubes[J].  Advanced  [38]   HSU S H,KANG W P,DAVIDSON J L,et al. Nanodia-
                  Materials,2023,35(31):2300185.                    mond vacuum field emission integrated differential amplifi-
              [26]   WU G T,WEI X L,GAO S,et al. Tunable graphene micro-  er[J]. IEEE Transactions on Electron Devices,2013,60(1):
                  emitters with fast temporal response and controllable elec-  487−493.
                  tron emission[J]. Nature Communications,2016,7:11513.  [39]   HSU  S  H, KANG  W  P, DAVIDSON  J  L, et  al.  Perfor-
              [27]   SRISONPHAN S,KIM M,KIM H K. Space charge neu-  mance  characteristics  of  nanocrystalline  diamond  vacuum
                  tralization  by  electron-transparent  suspended  graphene[J].  field emission transistor array[J]. Journal of Applied Physics,
                  Scientific Reports,2014,4:3764.                   2012,111(11):114502.
              [28]   SAPKOTA  K  R, LEONARD  F, TALIN  A  A, et  al.  Ul-  [40]   CHANG W T,CHENG M C,CHUANG S Y,et al. Field
                  tralow voltage GaN vacuum nanodiodes in air[J]. Nano Let-  emission  air-channel  devices  as  a  voltage  adder[J].  Nano-
                  ters,2021,21(5):1928−1934.                        materials,2020,10(12):2378.
              [29]   WEI Y Z,CHEN F L,HUANG R H,et al. Fast response  [41]   ZHANG Y,WEI Y,PAN Y,et al. A planar GaN nano air
                  GaN nanoscale air channel diodes with highly stable 10 mA  channel diode with high current and radiation-resistance[C]//
                  output current toward wafer-scale fabrication[J]. Advanced  2024  Joint  International  Vacuum  Electronics  Conference
                  Science,2023,10(17):2206385.                      and  International  Vacuum  Electron  Sources  Conference
              [30]   WEI Y,CHEN F,ZHANG Y,et al. GaN nano air channel  (IVEC+ IVESC),2024.
                  diodes:Enabling high rectification ratio and neutron robust  [42]   CHANG  W  T, CHUANG  T  Y, SU  C  W.  Metal-based
   14   15   16   17   18   19   20   21   22   23   24