Page 34 - 《渔业研究》2025年第3期
P. 34
第 3 期 姚海燕等: 两种工况对人工湿地模型微生物群落结构及脱氮除磷的影响 291
nitrate contaminated groundwater with a fiber-based 验研究与工程示范 [D]. 南京:东南大学,2020.
biofilm reactor[J]. Bioresource Technology, 2009, 100 Li X. Experimental research and engineering demonstra-
(7): 2223 − 2227. tion of surface flow constructed wetland to lightly pol-
[17] 姚子惠. 氮胁迫下垂直潜流人工湿地植物的生理响应 luted city river purification[D]. Nanjing: Southeast Uni-
与污染物去除特性 [D]. 西安:西安建筑科技大学, versity, 2020.
2022. [25] 陈星. 复合人工湿地生物脱氮途径的研究 [D]. 重庆:
Yao Z H. Physiological response and pollutant removal 重庆大学,2017.
characteristics of vertical subsurface flow constructed Chen X. Biological nitrogen removal pathways in a hy-
wetlands under nitrogen stress[D]. Xi’an: Xi’an Uni- brid constructed wetland[D]. Chongqing: Chongqing
versity of Architecture and Technology, 2022. University, 2017.
[18] 郭烨烨. 间歇曝气垂直潜流人工湿地的污水净化效果 [26] 曹雁,王桐屿,秦玉洁,等. 厌氧氨氧化反应器脱氮
及微生物机理研究 [D]. 济南:山东大学,2014. 性能及细菌群落多样性分析 [J]. 环境科学,2017,
Guo Y Y. Study on wastewater treatment in intermittent- 38(4) :1544 − 1550.
aerated vertical subsurface flow constructed wetland[D]. Cao Y, Wang T Y, Qin Y J, et al. Nitrogen removal
Jinan: Shandong University, 2014. characteristics and diversity of microbial community in
[19] 梁威,吴振斌. 人工湿地对污水中氮磷的去除机制研 anammox reactor[J]. Environmental Science, 2017,
究进展 [J]. 环境科学动态,2000(3) :32 − 37. 38(4): 1544 − 1550.
Liang W, Wu Z B. Research progress on removal mech- [27] 金朋,吴洪喜,孟庆辉,等. 一种自行研制的养殖水
anism of nitrogen and phosphorus from wastewater by 原位净化装置的应用效果试验 [J]. 渔业现代化,
constructed wetland[J]. Environmental Science Trends, 2020,47(2) :52 − 59.
2000(3): 32 − 37. Jin P, Wu H X, Meng Q H, et al. Application effect test
[20] 王博. 复合型人工湿地对黑臭水体的净化性能及其微生 of self-developed in-situ purification device for aquacul-
物学机制研究 [D]. 哈尔滨:哈尔滨工业大学,2017. ture water[J]. Fishery Modernization, 2020, 47(2): 52 −
Wang B. Purification performance of odorous-black wa- 59.
ter and it’s microbial mechanisms in integrated construc- [28] 林燕,张焕杰,刘曦,等. 固定反硝化菌强化人工湿
ted wetland[D]. Harbin: Harbin Institute of Technology, 地 处 理 低 污 染 水 研 究 [J]. 农 业 环 境 科 学 学 报 ,
2017. 2016,35(11) :2154 − 2162.
[21] 侯洁. 生物炭对潜流人工湿地生物脱氮影响机理研 Lin Y, Zhang H J, Liu X, et al. Performance of immobil-
究 [D]. 重庆:西南大学,2017. ized denitrifying bacteria in constructed wetland for
Hou J. Influences of biochar on biological nitrogen re- slightly-polluted water treatment[J]. Journal of Agro-
moval in subsurface flow constructed wetland[D]. Environment Science, 2016, 35(11): 2154 − 2162.
Chongqing: Southwest University, 2017. [29] 王梦亮,王京伟,苏小睿. 脱氮微生物对养殖水体有
[22] 王宇阳. 木本植物多样性对人工湿地生态系统净化功 机氮去除作用的研究 [J]. 水处理技术,2007,33(6) :
能的影响 [D]. 杭州:浙江农林大学,2021. 45 − 48,52.
Wang Y Y. Effect of woody plant diversity on purifying Wang M L, Wang J W, Su X R. Researches on organic
function of constructed wetland ecosystem[D]. Hang- nitrogen removal action in culturing water body byde-ni-
zhou: Zhejiang A&F University, 2021. trogen microorgansim[J]. Technology of Water Treat-
[23] 黄文平. 潮汐−连续垂直流湿地对高污染河水的净化 ment, 2007, 33(6): 45 − 48, 52.
特性研究 [D]. 西安:西安建筑科技大学,2017. [30] 房昀昊. 人工湿地和自然湿地细菌群落结构特征比
Huang W P. Study on characteristics of tidal-continuous 较 [D]. 长沙:湖南大学,2018.
flow combined constructed wetland for polluted river Fang Y H. Comparison of bacterial community structure
water purification[D]. Xi’an: Xi’an University of Archi- characteristics between constructed wetland and natural
tecture and Technology, 2017. wetland[D]. Changsha: Hunan University, 2018.
[24] 李馨. 表面流人工湿地改善轻污染城市河道水质的试 [31] 张翔,闫茂仓,肖国强,等. 虾−贝−红树林耦合循环