Page 186 - 卫星导航2021年第1-2合期
P. 186

Zhang et al. Satell Navig            (2021) 2:11                                        Page 10 of 10





               conference of the IEEE international frequency control and the European   Wanninger, L., Sumaya, H., & Beer, S. (2017). Group delay variations of GPS
               frequency and time forum (FCS) proceedings, 2011i (pp. 1–6). IEEE.  transmitting and receiving antennas. Journal of Geodesy, 91, 1099–1116.
            Martinez-Belda, M. C., Defraigne, P., & Bruyninx, C. (2012). On the potential of   Wielgosz, P., Grejner-Brzezinska, D., & Kashani, I. (2005). High-accuracy DGPS
               Galileo E5 for time transfer. IEEE Transactions on Ultrasonics, Ferroelectrics,   and precise point positioning based on Ohio CORS network. Navigation,
               and Frequency Control, 60, 121–131.               52, 23–28.
            Montenbruck, O., Hauschild, A., & Steigenberger, P. (2014). Diferential code   Wright, T. J., Houlié, N., Hildyard, M., & Iwabuchi, T. (2012). Real-time, reliable
               bias estimation using multi-GNSS observations and global ionosphere   magnitudes for large earthquakes from 1 Hz GPS precise point position-
               maps. Navigation: Journal of The Institute of Navigation, 61, 191–201.  ing: The 2011 Tohoku-Oki (Japan) earthquake. Geophysical Research
            Odijk, D., Zhang, B., Khodabandeh, A., Odolinski, R., & Teunissen, P. J. (2016).   Letters, 39, 12302.
               On the estimability of parameters in undiferenced, uncombined GN   Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Quan, Z., & Yanagidani, T. (2013). High-rate
               network and PPP-RTK user models by means of S-system theory. Journal   precise point positioning (PPP) to measure seismic wave motions: an
               of Geodesy, 90, 15–44.                            experimental comparison of GPS PPP with inertial measurement units.
            Orgiazzi, D., Tavella, P., & Lahaye, F. (2005). Experimental assessment of the time   Journal of Geodesy, 87, 361–372.
               transfer capability of precise point positioning (PPP). In Proceedings of the   Yuan, Y., Zhang, K., Rohm, W., Choy, S., Norman, R., & Wang, C. S. (2014). Real-
               2005 IEEE international frequency control symposium and exposition, 2005   time retrieval of precipitable water vapor from GPS precise point posi-
               (pp. 337–345). IEEE.                              tioning. Journal of Geophysical Research: Atmospheres, 119, 10044–10057.
            Rabbou, M. A., & El-Rabbany, A. (2015). Tightly coupled integration of GPS pre-  Zha, J., Zhang, B., Yuan, Y., Zhang, X., & Li, M. (2019). Use of modifed carrier-
               cise point positioning and MEMS-based inertial systems. GPS Solutions,   to-code leveling to analyze temperature dependence of multi-GNSS
               19, 601–609.                                      receiver DCB and to retrieve ionospheric TEC. GPS Solutions, 23, 103.
            Roma-Dollase, D. (2018). Consistency of seven diferent GNSS global iono-  Zhang, B., Ou, J., Yuan, Y., & Li, Z. (2012). Extraction of line-of-sight ionospheric
               spheric mapping techniques during one solar cycle. Journal of Geodesy,   observables from GPS data using precise point positioning. Science China
               92, 691–706.                                      Earth Sciences, 55, 1919–1928.
            Rovira-Garcia, A., Juan, J. M., Sanz, J., & González-Casado, G. (2015). A world-  Zhang, B., Teunissen, P. J., Yuan, Y., Zhang, X., & Li, M. (2019). A modifed carrier-
               wide ionospheric model for fast precise point positioning. IEEE Transac-  to-code leveling method for retrieving ionospheric observables and
               tions on Geoscience and Remote Sensing, 53, 4596–4604.  detecting short-term temporal variability of receiver diferential code
            Sardon, E., Rius, A., & Zarraoa, N. (1994). Estimation of the transmitter and   biases. Journal of Geodesy, 93, 19–28.
               receiver diferential biases and the ionospheric total electron content   Zumberge, J. F., Hefin, M. B., Jeferson, D. C., Watkins, M. M., & Webb, F. H.
               from Global Positioning System observations. Radio Science, 29, 577–586.  (1997). Precise point positioning for the efcient and robust analysis of
            Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Real-time GPS precise point positioning-  GPS data from large networks. Journal of Geophysical Research: Solid Earth,
               based precipitable water vapor estimation for rainfall monitoring and   102, 5005–5017.
               forecasting. IEEE Transactions on Geoscience and Remote Sensing, 53,   Zumberge, J. F., Watkins, M. M., & Webb, F. H. (1997). Characteristics and
               3452–3459.                                        applications of precise GPS clock solutions every 30 seconds. Navigation,
            Teunissen, P. (1985). Zero order design: generalized inverses, adjustment, the   44, 449–456.
               datum problem and S-transformations. In E. W. Grafarend & F. Sansò (Eds.),
               Optimization and design of geodetic networks (pp. 11–55). Berlin: Springer.  Publisher’s Note
            Teunissen, P. J., & Kleusberg, A. (2012). GPS for geodesy. Berlin: Springer.
            Tu, R., Zhang, P., Zhang, R., Liu, J., & Lu, X. (2019). Modeling and performance   Springer Nature remains neutral with regard to jurisdictional claims in pub-
               analysis of precise time transfer based on BDS triple-frequency un-  lished maps and institutional afliations.
               combined observations. Journal of Geodesy, 93, 837–847.
   181   182   183   184   185   186   187   188   189   190   191