Page 133 - 卫星导航2021年第1-2合期
P. 133
Xia et al. Satell Navig (2021) 2:8 Page 19 of 19
de Bakker, P., van der Marel, H., & Tiberius, C. (2009). Geometry-free undifer- Sun, W., Li, Y., & Duan, S. (2020). Xiaomi Mi 8 smartphone GNSS data quality
enced, single and double diferenced analysis of single frequency GPS. analysis and single-frequency RTK positioning performance evaluation. In
EGNOS and GIOVE-A/B measurements. GPS Solutions, 13(4), 305–314. IET radar, sonar & navigation.
Fortunato, M., Critchley-Marrows, J., Siutkowska, M., et al. (2019). Enabling high Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver
accuracy dynamic applications in urban environments using PPP and with an open source program package RTKLIB. In International sympo-
RTK on android multi-frequency and multi-GNSS smartphones. In 2019 sium on GPS/GNSS (pp. 4–6). International Convention Center Jeju Korea.
European navigation conference (ENC) (pp. 1–9). IEEE. Wang, C., Zhao, Q., Guo, J., et al. (2019a). The contribution of intersatellite
Gao, H., & Groves, P. (2018). Environmental context detection for adaptive links to BDS-3 orbit determination: Model refnement and comparisons.
navigation using GNSS measurements from a smartphone. Navigation: Navigation, 66(1), 71–82.
Journal of the Institute of Navigation, 65(1), 99–116. Wang, L., Li, Z., Zhao, J., et al. (2016). Smart device-supported BDS/GNSS
Gill, M., Bisnath, S., Aggrey, J., et al. (2017). Precise point positioning (PPP) using real-time kinematic positioning for sub-meter-level accuracy in urban
low-cost and ultra-low-cost GNSS receivers. In Proceedings of the ION location-based services. Sensors, 16(12), 2201.
GNSS (pp. 226–236). Wang, M., Wang, J., Dong, D., et al. (2019b). Performance of BDS-3: satellite vis-
Gu, S., Wang, Y., Zhao, Q., et al. (2020). BDS-3 diferential code bias estimation ibility and dilution of precision. GPS Solutions, 23(2), 56.
with undiferenced uncombined model based on triple-frequency obser- Wang, Q., Jin, S., Yuan, L., et al. (2020). Estimation and analysis of BDS-3 diferen-
vation. Journal of Geodesy, 94, 45. tial code biases from MGEX observations. Remote Sensing, 12(1), 68.
Guo, S., Cai, H., Meng, Y., et al. (2019). BDS-3 RNSS technical characteristics Wanninger, L., & Heßelbarth, A. (2020). GNSS code and carrier phase observa-
and service performance. ActaGeodaetica et CartographicaSinica, 48(7), tions of a Huawei P30 smartphone: quality assessment and centimeter-
810–821. ((In Chinese)). accurate positioning. GPS Solutions, 24(2), 64.
GSA. (2019). GSA GNSS Market Report Issue 6 (available at: www.gsa.europ Xie, X., Fang, R., Geng, T., et al. (2018). Characterization of GNSS signals tracked
a.eu/syste m/fles /repor ts/marke t_repor t_issue _6_v2.pdf. Accessed on by the iGMAS network considering recent BDS-3 satellites. Remote Sens-
August 10, 2020 ing, 10(11), 1736.
IGS MGEX. (2020). http://mgex.igs.org/IGS_MGEX_Statu s_BDS.php. Accessed Xie, X., Geng, T., Zhao, Q., et al. (2019). Precise orbit determination for BDS-3
on August 17, 2020 satellites using satellite-ground and inter-satellite link observations. GPS
Liu, J., Gao, K., Guo, W., et al. (2020). Role, path, and vision of “5G+ BDS/GNSS.” Solutions, 23(2), 40.
Satellite Navigation, 1(1), 1–8. Xia, Y., Pan, S., Gao, W., et al. (2020). Recurrent neural network based scenario
Liu, W., Shi, X., Zhu, F., et al. (2019). Quality analysis of multi-GNSS raw observa- recognition with multi-constellation GNSS measurements on a smart-
tions and a velocity-aided positioning approach based on smartphones. phone. Measurement, 153, 107420.
Advances in Space Research, 63(8), 2358–2377. Yang, Y., Gao, W., Guo, S., et al. (2019). Introduction to BeiDou-3 navigation
Lu, M., Li, W., Yao, Z., et al. (2019). Overview of BDS III new signals. Navigation, satellite system. Navigation, 66(1), 7–18.
66(1), 19–35. Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments
Lv, Y., Geng, T., Zhao, Q., et al. (2020). Initial assessment of BDS-3 preliminary of BeiDou global navigation satellite system. Satellite Navigation, 1(1), 1–8.
system signal-in-space range error. GPS Solutions, 24(1), 16. Zhang, K., Jiao, W., Wang, L., et al. (2019a). Smart-RTK: Multi-GNSS kinematic
Meng, X., Roberts, G., Dodson, A., et al. (2004). Impact of GPS satellite and positioning approach on android smart devices with Doppler-smoothed-
pseudolite geometry on structural deformation monitoring: analytical code flter and constant acceleration model. Advances in Space Research,
and empirical studies. Journal of Geodesy, 77(12), 809–822. 64(9), 1662–1674.
Niu, Z., Nie, P., Tao, L., et al. (2019). RTK with the assistance of an IMU-based Zhang, X., Tao, X., Zhu, F., et al. (2018). Quality assessment of GNSS observations
pedestrian navigation algorithm for smartphones. Sensors, 19(14), 3228. from an Android N smartphone and positioning performance analysis
Odolinski, R., & Teunissen, P. (2019). An assessment of smartphone and low- using time-diferenced fltering approach. GPS Solutions, 22(3), 70.
cost multi-GNSS single-frequency RTK positioning for low, medium and Zhang, Y., Kubo, N., Chen, J., et al. (2020). Apparent clock and TGD biases
high ionospheric disturbance periods. Journal of Geodesy, 93(5), 701–722. between BDS-2 and BDS-3. GPS Solutions, 24(1), 27.
Paziewski, J., Sieradzki, R., & Baryla, R. (2019). Signal characterization and Zhang, Z., Li, B., Nie, L., et al. (2019b). Initial assessment of BeiDou-3 global
assessment of code GNSS positioning with low-power consumption navigation satellite system: signal quality, RTK and PPP. GPS Solutions,
smartphones. GPS Solutions, 23(4), 98. 23(4), 111.
Reußner, N., & Wanninger, L. (2012). GLONASS inter-frequency code biases and Zhu, F., Tao, X., Liu, W., et al. (2019). Walker: Continuous and precise naviga-
PPP carrier-phase ambiguity resolution. Journal of Geodesy, 86, 139–148. tion by fusing GNSS and MEMS in smartphone chipsets for pedestrians.
Riley, S., Landau, H., Gomez, V., et al. (2018). Positioning with android: GNSS Remote sensing, 11(2), 139.
observables. GPS World, 29(1), 18–34.
Sharawi, M., Akos, D., & Aloi, D. (2007). GPS C/N0 estimation in the presence Publisher’s Note
of interference and limited quantization levels. IEEE Transactions on Aero-
space and Electronic Systems, 43(1), 227–238. Springer Nature remains neutral with regard to jurisdictional claims in pub-
Shi, J., Ouyang, C., Huang, Y., et al. (2020). Assessment of BDS-3 global position- lished maps and institutional afliations.
ing service: Ephemeris, SPP, PPP, RTK, and new signal. GPS Solutions, 24(3),
1–14.
Specht, C., Dabrowski, P., Pawelski, J., et al. (2019). Comparative analysis of
positioning accuracy of GNSS receivers of Samsung Galaxy smartphones
in marine dynamic measurements. Advances in Space Research, 63(9),
3018–3028.