Page 133 - 卫星导航2021年第1-2合期
P. 133

Xia et al. Satell Navig             (2021) 2:8                                        Page 19 of 19





            de Bakker, P., van der Marel, H., & Tiberius, C. (2009). Geometry-free undifer-  Sun, W., Li, Y., & Duan, S. (2020). Xiaomi Mi 8 smartphone GNSS data quality
               enced, single and double diferenced analysis of single frequency GPS.   analysis and single-frequency RTK positioning performance evaluation. In
               EGNOS and GIOVE-A/B measurements. GPS Solutions, 13(4), 305–314.  IET radar, sonar & navigation.
            Fortunato, M., Critchley-Marrows, J., Siutkowska, M., et al. (2019). Enabling high   Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver
               accuracy dynamic applications in urban environments using PPP and   with an open source program package RTKLIB. In International sympo-
               RTK on android multi-frequency and multi-GNSS smartphones. In 2019   sium on GPS/GNSS (pp. 4–6). International Convention Center Jeju Korea.
               European navigation conference (ENC) (pp. 1–9). IEEE.  Wang, C., Zhao, Q., Guo, J., et al. (2019a). The contribution of intersatellite
            Gao, H., & Groves, P. (2018). Environmental context detection for adaptive   links to BDS-3 orbit determination: Model refnement and comparisons.
               navigation using GNSS measurements from a smartphone. Navigation:   Navigation, 66(1), 71–82.
               Journal of the Institute of Navigation, 65(1), 99–116.  Wang, L., Li, Z., Zhao, J., et al. (2016). Smart device-supported BDS/GNSS
            Gill, M., Bisnath, S., Aggrey, J., et al. (2017). Precise point positioning (PPP) using   real-time kinematic positioning for sub-meter-level accuracy in urban
               low-cost and ultra-low-cost GNSS receivers. In Proceedings of the ION   location-based services. Sensors, 16(12), 2201.
               GNSS (pp. 226–236).                            Wang, M., Wang, J., Dong, D., et al. (2019b). Performance of BDS-3: satellite vis-
            Gu, S., Wang, Y., Zhao, Q., et al. (2020). BDS-3 diferential code bias estimation   ibility and dilution of precision. GPS Solutions, 23(2), 56.
               with undiferenced uncombined model based on triple-frequency obser-  Wang, Q., Jin, S., Yuan, L., et al. (2020). Estimation and analysis of BDS-3 diferen-
               vation. Journal of Geodesy, 94, 45.               tial code biases from MGEX observations. Remote Sensing, 12(1), 68.
            Guo, S., Cai, H., Meng, Y., et al. (2019). BDS-3 RNSS technical characteristics   Wanninger, L., & Heßelbarth, A. (2020). GNSS code and carrier phase observa-
               and service performance. ActaGeodaetica et CartographicaSinica, 48(7),   tions of a Huawei P30 smartphone: quality assessment and centimeter-
               810–821. ((In Chinese)).                          accurate positioning. GPS Solutions, 24(2), 64.
            GSA. (2019). GSA GNSS Market Report Issue 6 (available at: www.gsa.europ   Xie, X., Fang, R., Geng, T., et al. (2018). Characterization of GNSS signals tracked
               a.eu/syste m/fles /repor ts/marke t_repor t_issue _6_v2.pdf. Accessed on   by the iGMAS network considering recent BDS-3 satellites. Remote Sens-
               August 10, 2020                                   ing, 10(11), 1736.
            IGS MGEX. (2020). http://mgex.igs.org/IGS_MGEX_Statu s_BDS.php. Accessed   Xie, X., Geng, T., Zhao, Q., et al. (2019). Precise orbit determination for BDS-3
               on August 17, 2020                                satellites using satellite-ground and inter-satellite link observations. GPS
            Liu, J., Gao, K., Guo, W., et al. (2020). Role, path, and vision of “5G+ BDS/GNSS.”   Solutions, 23(2), 40.
               Satellite Navigation, 1(1), 1–8.               Xia, Y., Pan, S., Gao, W., et al. (2020). Recurrent neural network based scenario
            Liu, W., Shi, X., Zhu, F., et al. (2019). Quality analysis of multi-GNSS raw observa-  recognition with multi-constellation GNSS measurements on a smart-
               tions and a velocity-aided positioning approach based on smartphones.   phone. Measurement, 153, 107420.
               Advances in Space Research, 63(8), 2358–2377.  Yang, Y., Gao, W., Guo, S., et al. (2019). Introduction to BeiDou-3 navigation
            Lu, M., Li, W., Yao, Z., et al. (2019). Overview of BDS III new signals. Navigation,   satellite system. Navigation, 66(1), 7–18.
               66(1), 19–35.                                  Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments
            Lv, Y., Geng, T., Zhao, Q., et al. (2020). Initial assessment of BDS-3 preliminary   of BeiDou global navigation satellite system. Satellite Navigation, 1(1), 1–8.
               system signal-in-space range error. GPS Solutions, 24(1), 16.  Zhang, K., Jiao, W., Wang, L., et al. (2019a). Smart-RTK: Multi-GNSS kinematic
            Meng, X., Roberts, G., Dodson, A., et al. (2004). Impact of GPS satellite and   positioning approach on android smart devices with Doppler-smoothed-
               pseudolite geometry on structural deformation monitoring: analytical   code flter and constant acceleration model. Advances in Space Research,
               and empirical studies. Journal of Geodesy, 77(12), 809–822.  64(9), 1662–1674.
            Niu, Z., Nie, P., Tao, L., et al. (2019). RTK with the assistance of an IMU-based   Zhang, X., Tao, X., Zhu, F., et al. (2018). Quality assessment of GNSS observations
               pedestrian navigation algorithm for smartphones. Sensors, 19(14), 3228.  from an Android N smartphone and positioning performance analysis
            Odolinski, R., & Teunissen, P. (2019). An assessment of smartphone and low-  using time-diferenced fltering approach. GPS Solutions, 22(3), 70.
               cost multi-GNSS single-frequency RTK positioning for low, medium and   Zhang, Y., Kubo, N., Chen, J., et al. (2020). Apparent clock and TGD biases
               high ionospheric disturbance periods. Journal of Geodesy, 93(5), 701–722.  between BDS-2 and BDS-3. GPS Solutions, 24(1), 27.
            Paziewski, J., Sieradzki, R., & Baryla, R. (2019). Signal characterization and   Zhang, Z., Li, B., Nie, L., et al. (2019b). Initial assessment of BeiDou-3 global
               assessment of code GNSS positioning with low-power consumption   navigation satellite system: signal quality, RTK and PPP. GPS Solutions,
               smartphones. GPS Solutions, 23(4), 98.            23(4), 111.
            Reußner, N., & Wanninger, L. (2012). GLONASS inter-frequency code biases and   Zhu, F., Tao, X., Liu, W., et al. (2019). Walker: Continuous and precise naviga-
               PPP carrier-phase ambiguity resolution. Journal of Geodesy, 86, 139–148.  tion by fusing GNSS and MEMS in smartphone chipsets for pedestrians.
            Riley, S., Landau, H., Gomez, V., et al. (2018). Positioning with android: GNSS   Remote sensing, 11(2), 139.
               observables. GPS World, 29(1), 18–34.
            Sharawi, M., Akos, D., & Aloi, D. (2007). GPS C/N0 estimation in the presence   Publisher’s Note
               of interference and limited quantization levels. IEEE Transactions on Aero-
               space and Electronic Systems, 43(1), 227–238.  Springer Nature remains neutral with regard to jurisdictional claims in pub-
            Shi, J., Ouyang, C., Huang, Y., et al. (2020). Assessment of BDS-3 global position-  lished maps and institutional afliations.
               ing service: Ephemeris, SPP, PPP, RTK, and new signal. GPS Solutions, 24(3),
               1–14.
            Specht, C., Dabrowski, P., Pawelski, J., et al. (2019). Comparative analysis of
               positioning accuracy of GNSS receivers of Samsung Galaxy smartphones
               in marine dynamic measurements. Advances in Space Research, 63(9),
               3018–3028.
   128   129   130   131   132   133   134   135   136   137   138