Page 99 - 《武汉大学学报(信息科学版)》2025年第10期
P. 99
2034 武 汉 大 学 学 报 (信 息 科 学 版) 2025 年 10 月
guity Resolution Method and Results Analysis for tion Using an Integer Nonlinear Programming Method
GNSS Uncombined PPP[J]. Geomatics and Infor‑ [C]//The 8th International Technical Meeting of
mation Science of Wuhan University, 2022, 47(6): the Satellite Division of the Institute of Navigation,
979-989. Palm Springs, California, 1995.
[8] TEUNISSEN P J G. Theory of Integer Equivariant [15] 阮仁桂 . SPODS 软件 GPS/GNSS 网解的模糊度解
Estimation with Application to GNSS[J]. Journal 算方法[J]. 测绘学报, 2015, 44(2): 128-134.
of Geodesy, 2003, 77(7): 402-410. RUAN Rengui. Ambiguity Resolution for GPS/
[9] 杜祯强, 柴洪洲, 潘宗鹏, 等 . 针对消电离层组合 GNSS Network Solution with SPODS[J]. Acta
FCB 的非组合 PPP 部分模糊度固定方法[J]. 武汉 Geodaetica et Cartographica Sinica, 2015, 44(2):
大学学报(信息科学版), 2021, 46(6): 913-919. 128-134.
DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, [16] TEUNISSEN P J G, VERHAGEN S. The GNSS
et al. Partial Ambiguity Resolution Method for Un‑ Ambiguity Ratio-Test Revisited: A Better Way of
combined PPP Using Ionosphere-Free Combined Using It[J]. Survey Review, 2009, 41(312):
FCB[J]. Geomatics and Information Science of Wu‑ 138-151.
han University, 2021, 46(6): 913-919. [17] GENG J H, CHEN X Y, PAN Y X, et al. PRIDE
[10] MA L Y, LOU Y D, LU L G, et al. GNSS Best PPP-AR: An Open-Source Software for GPS PPP
Integer Equivariant Estimation Combining with Inte‑ Ambiguity Resolution[J]. GPS Solutions, 2019, 23
ger Least Squares Estimation: An Integrated Ambi‑ (4): 91.
guity Resolution Method with Optimal Integer Aper‑ [18] TEUNISSEN P. On the Computation of the Best
ture Test[J]. GPS Solutions, 2022, 26(4): 100. Integer Equivariant Estimator[J]. Artificial Satel‑
[11] ODOLINSKI R, TEUNISSEN P J G. Best Integer lites, 2005, 40(3): 161-171.
Equivariant Estimation:Performance Analysis Using [19] WANG N B, YUAN Y B, LI Z S, et al. Determi‑
Real Data Collected by Low-Cost,Single- and Dual- nation of Differential Code Biases with Multi-GNSS
Frequency, Multi-GNSS Receivers for Short- to Observations[J]. Journal of Geodesy, 2016, 90
Long-Baseline RTK Positioning[J]. Journal of Geo‑ (3): 209-228.
desy, 2020, 94(9): 91. [20] 李盼 . GNSS 精密单点定位模糊度快速固定技术和
[12] DUONG V, HARIMA K, CHOY S, et al. GNSS 方法研究[D]. 武汉: 武汉大学, 2016.
Best Integer Equivariant Estimation Using Multi‑ LI Pan. Research on Methodology of Rapid Ambigui‑
variant T-Distribution: A Case Study for Precise ty Resolution for GNSS Precise Point Positioning
Point Positioning[J]. Journal of Geodesy, 2021, 95 [D]. Wuhan: Wuhan University, 2016.
(1): 10. [21] 曹新运, 沈飞, 李建成, 等 . BDS-3/GNSS 非组合
[13] MELBOURNE W G. The Case for Ranging in 精密单点定位[J]. 武汉大学学报(信息科学版),
GPS-Based Geodetic Systems[C]//The First Inter‑ 2023, 48(1): 92-100.
national Symposium on Precise Positioning with the CAO Xinyun,SHEN Fei,LI Jiancheng, et al. BDS-
Global Positioning System, Rockville, Maryland, 3/GNSS Uncombined Precise Point Positioning[J].
1985. Geomatics and Information Science of Wuhan Uni‑
[14] WEI M, SCHWARZ K P. Fast Ambiguity Resolu‑ versity, 2023, 48(1): 92-100.

