Page 112 - 《武汉大学学报(信息科学版)》2025年第10期
P. 112
第 50 卷第 10 期 张 唯等:降水融合数据特征驱动下基于 GAN 的遥感降水产品空间超分辨率重建 2047
Yangtze River, 2021, 52(9): 93-100. 中国合肥, 2018.
[14] 史 岚 , 何 其 全 , 杨 娇 , 等 . 闽 浙 赣 地 区 GPM SHI Chunxiang, GU Junxia, HAN Shuai, et al.
IMERG 降水产品降尺度建模与比较分析[J]. 地球 Advances in National Intelligent Grid Live Fusion
信息科学学报, 2019, 21(10): 1642-1652. Analysis Products [C]//The 35th Annual Meeting
SHI Lan, HE Qiquan, YANG Jiao, et al. Down‑ of the Chinese Meteorological Society,Hefei, Chi‑
scaling Modeling of the GPM IMERG Precipitation na, 2018.
Product and Comparative Analysis in the Fujian-Zhe‑ [24] 卢新玉 . 融合多源遥感数据与地面观测的新疆地区
jiang-Jiangxi Region[J]. Journal of Geo-Informa‑ 降水量估算方法研究[D]. 南京: 南京信息工程大
tion Science, 2019, 21(10): 1642-1652. 学, 2019.
[15] WRIGHT D B, KNUTSON T R, SMITH J A. LU Xinyu. Merging Method of Precipitation based
Regional Climate Model Projections of Rainfall from on Multi-source Remote Sensing Data and Ground
U. S. Landfalling Tropical Cyclones[J]. Climate Observation in Xinjiang[D]. Nanjing: Nanjing Uni‑
Dynamics, 2015, 45(11): 3365-3379. versity of Information Science and Technology,
[16] CHEN F R, LIU Y, LIU Q, et al. Spatial Down‑ 2019.
scaling of TRMM 3B43 Precipitation Considering [25] 许智铭, 王正涛 . 联合 GRACE 和水文数据探测松
Spatial Heterogeneity[J]. International Journal of 花江流域地下水时空变化[J]. 武汉大学学报(信息
Remote Sensing, 2014, 35(9): 3074-3093. 科学版), 2023, 48(9): 1409-1415.
[17] WANG M M, HE G J, ZHANG Z M, et al. Com‑ XU Zhiming, WANG Zhengtao. Detect Songhua
parison of Spatial Interpolation and Regression Analy‑ River Basin Groundwater Spatiotemporal Variation
sis Models for an Estimation of Monthly Near Sur‑ Characteristics by GRACE and Multi-source Hydro‑
face Air Temperature in China[J]. Remote Sensing, logical Data[J]. Geomatics and Information Science
2017, 9(12): 1278. of Wuhan University, 2023, 48(9): 1409-1415.
[18] ZHAN C S, HAN J, HU S, et al. Spatial Down‑ [26] CHEN F R, GAO Y Q, WANG Y G, et al. Down‑
scaling of GPM Annual and Monthly Precipitation scaling Satellite-Derived Daily Precipitation Products
Using Regression-Based Algorithms in a Mountainous with an Integrated Framework[J]. International
Area[J]. Advances in Meteorology, 2018, 2018 Journal of Climatology, 2019, 39(3): 1287-1304.
(1): 1506017. [27] GEMITZI A, KOUTSIAS N, LAKSHMI V. A
[19] MA Z Q, HE K, TAN X, et al. Comparisons of Spatial Downscaling Methodology for GRACE To‑
Spatially Downscaling TMPA and IMERG over the tal Water Storage Anomalies Using GPM IMERG
Tibetan Plateau[J]. Remote Sensing, 2018, 10 Precipitation Estimates[J]. Remote Sensing, 2021,
(12): 1883. 13(24): 5149.
[20] 程建新 . 基于深度学习超分辨率的气象预报系统研 [28] 叶梦姝 . 中国大气再分析资料降水产品在天气和气
究[D]. 武汉: 武汉大学, 2021. 候中的适用性研究[D]. 兰州: 兰州大学, 2018.
CHENG Jianxin. Research on Meteorological Fore‑ YE Mengshu. Reasearch on the Applicability of Pre‑
cast System Based on Deep Learning Super Resolu‑ cipitation Reanalysis Data in CRA-Interim of Cli‑
tion[D]. Wuhan: Wuhan University, 2021. mate and Weather Characters in China[D]. Lan‑
[21] JIANG Y Z, YANG K, SHAO C K, et al. A zhou: Lanzhou University, 2018.
Downscaling Approach for Constructing High-Reso‑ [29] 鹿璇, 汪鼎文, 石文轩 . 利用在线字典学习实现图
lution Precipitation Dataset over the Tibetan Plateau 像超分辨率重建的算法[J]. 武汉大学学报(信息科
from ERA5 Reanalysis[J]. Atmospheric Research, 学版), 2018, 43(5): 719-725.
2021, 256: 105574. LU Xuan, WANG Dingwen, SHI Wenxuan. Image
[22] VANDAL T, KODRA E, GANGULY S, et al. Super-Resolution with On-Line Dictionary Learning
Deepsd: Generating High Resolution Climate [J]. Geomatics and Information Science of Wuhan
Change Projections Through Single Image Super- University, 2018, 43(5): 719-725.
Resolution[C]//The 23rd ACM SIGKDD Interna‑ [30] 陈行, 罗斌 . 利用动态上采样滤波深度网络进行多
tional Conference on Knowledge Discovery and Data 角度遥感影像超分辨率重建[J]. 武汉大学学报(信
Mining, Halifax, NS, Canada, 2017. 息科学版), 2021, 46(11): 1716-1726.
[23] 师春香, 谷军霞, 韩帅, 等 . 全国智能网格实况融 CHEN Hang, LUO Bin. Multi-angle Remote
合分析产品进展[C]//第 35 届中国气象学会年会, Sensing Images Super-Resolution Reconstruction
(下转第 2085 页)

