Page 112 - 《武汉大学学报(信息科学版)》2025年第10期
P. 112

第 50 卷第 10 期   张  唯等:降水融合数据特征驱动下基于 GAN 的遥感降水产品空间超分辨率重建                               2047


                    Yangtze River, 2021, 52(9): 93-100.              中国合肥, 2018.
               [14]  史 岚 ,  何 其 全 ,  杨 娇 ,  等 .   闽 浙 赣 地 区 GPM      SHI  Chunxiang,  GU  Junxia,  HAN  Shuai,  et  al.
                    IMERG 降水产品降尺度建模与比较分析[J].  地球                     Advances  in  National  Intelligent  Grid  Live  Fusion
                    信息科学学报, 2019, 21(10): 1642-1652.                 Analysis  Products [C]//The  35th  Annual  Meeting
                    SHI  Lan,  HE  Qiquan,  YANG  Jiao,  et  al.   Down‑  of  the  Chinese  Meteorological  Society,Hefei,  Chi‑
                    scaling  Modeling  of  the  GPM  IMERG  Precipitation   na, 2018.
                    Product and Comparative Analysis in the Fujian-Zhe‑  [24]  卢新玉 .  融合多源遥感数据与地面观测的新疆地区
                    jiang-Jiangxi  Region[J].   Journal  of  Geo-Informa‑  降水量估算方法研究[D].  南京: 南京信息工程大
                    tion Science, 2019, 21(10): 1642-1652.           学, 2019.
               [15]  WRIGHT  D  B,  KNUTSON  T  R,  SMITH  J  A.     LU  Xinyu.   Merging  Method  of  Precipitation  based
                    Regional Climate Model Projections of Rainfall from   on  Multi-source  Remote  Sensing  Data  and  Ground
                    U. S.   Landfalling  Tropical  Cyclones[J].   Climate   Observation in Xinjiang[D].  Nanjing: Nanjing Uni‑
                    Dynamics, 2015, 45(11): 3365-3379.               versity  of  Information  Science  and  Technology,
               [16]  CHEN F R, LIU Y, LIU Q, et al.  Spatial Down‑   2019.
                    scaling  of  TRMM  3B43  Precipitation  Considering   [25]  许智铭, 王正涛 .  联合 GRACE 和水文数据探测松
                    Spatial  Heterogeneity[J].   International  Journal  of   花江流域地下水时空变化[J].  武汉大学学报(信息
                    Remote Sensing, 2014, 35(9): 3074-3093.          科学版), 2023, 48(9): 1409-1415.
               [17]  WANG M M, HE G J, ZHANG Z M, et al.  Com‑       XU  Zhiming,  WANG  Zhengtao.   Detect  Songhua
                    parison of Spatial Interpolation and Regression Analy‑  River  Basin  Groundwater  Spatiotemporal  Variation
                    sis  Models  for  an  Estimation  of  Monthly  Near  Sur‑  Characteristics by GRACE and Multi-source Hydro‑
                    face Air Temperature in China[J].  Remote Sensing,   logical Data[J].  Geomatics and Information Science
                    2017, 9(12): 1278.                               of Wuhan University, 2023, 48(9): 1409-1415.
               [18]  ZHAN  C  S,  HAN  J,  HU  S,  et  al.   Spatial  Down‑  [26]  CHEN F R, GAO Y Q, WANG Y G, et al.  Down‑
                    scaling  of  GPM  Annual  and  Monthly  Precipitation   scaling  Satellite-Derived  Daily  Precipitation  Products
                    Using Regression-Based Algorithms in a Mountainous   with  an  Integrated  Framework[J].   International
                    Area[J].   Advances  in  Meteorology,  2018,  2018  Journal of Climatology, 2019, 39(3): 1287-1304.
                    (1): 1506017.                               [27]  GEMITZI  A,  KOUTSIAS  N,  LAKSHMI  V.   A
               [19]  MA  Z  Q,  HE  K,  TAN  X,  et  al.   Comparisons  of   Spatial  Downscaling  Methodology  for  GRACE  To‑
                    Spatially Downscaling TMPA and IMERG over the    tal  Water  Storage  Anomalies  Using  GPM  IMERG
                    Tibetan  Plateau[J].   Remote  Sensing,  2018,  10  Precipitation Estimates[J].  Remote Sensing, 2021,
                    (12): 1883.                                      13(24): 5149.
               [20]  程建新 .  基于深度学习超分辨率的气象预报系统研                  [28]  叶梦姝 .  中国大气再分析资料降水产品在天气和气
                    究[D].  武汉: 武汉大学, 2021.                           候中的适用性研究[D].  兰州: 兰州大学, 2018.
                    CHENG Jianxin.  Research on Meteorological Fore‑  YE Mengshu.  Reasearch on the Applicability of Pre‑
                    cast System Based on Deep Learning Super Resolu‑  cipitation  Reanalysis  Data  in  CRA-Interim  of  Cli‑
                    tion[D].  Wuhan: Wuhan University, 2021.         mate  and  Weather  Characters  in  China[D].   Lan‑
               [21]  JIANG  Y  Z,  YANG  K,  SHAO  C  K,  et  al.   A   zhou: Lanzhou University, 2018.
                    Downscaling Approach for Constructing High-Reso‑  [29]  鹿璇, 汪鼎文, 石文轩 .  利用在线字典学习实现图
                    lution Precipitation Dataset over the Tibetan Plateau   像超分辨率重建的算法[J].  武汉大学学报(信息科
                    from  ERA5  Reanalysis[J].   Atmospheric  Research,   学版), 2018, 43(5): 719-725.
                    2021, 256: 105574.                               LU Xuan, WANG Dingwen, SHI Wenxuan.  Image
               [22]  VANDAL  T,  KODRA  E,  GANGULY  S,  et  al.     Super-Resolution with On-Line Dictionary Learning
                    Deepsd:  Generating  High  Resolution  Climate   [J].   Geomatics  and  Information  Science  of  Wuhan
                    Change  Projections  Through  Single  Image  Super-  University, 2018, 43(5): 719-725.
                    Resolution[C]//The  23rd  ACM  SIGKDD  Interna‑  [30]  陈行, 罗斌 .  利用动态上采样滤波深度网络进行多
                    tional Conference on Knowledge Discovery and Data   角度遥感影像超分辨率重建[J].  武汉大学学报(信
                    Mining, Halifax, NS, Canada, 2017.               息科学版), 2021, 46(11): 1716-1726.
               [23]  师春香, 谷军霞, 韩帅, 等 .  全国智能网格实况融                    CHEN  Hang,  LUO  Bin.   Multi-angle  Remote
                    合分析产品进展[C]//第 35 届中国气象学会年会,                      Sensing  Images  Super-Resolution  Reconstruction

                                                                                            (下转第 2085 页)
   107   108   109   110   111   112   113   114   115   116   117