Page 39 - 《上海体育大学学报》2024年第4期
P. 39
2024 年 4 月 第 48 卷 第 4 期 专题探索
[ 8 ] ZHU P, SUN F. Sports athletes' performance prediction
作者贡献声明: model based on machine learning algorithm[C]//
石慧敏:提出论文选题,搜集统计数据,撰写论文; ABAWAJY J, CHOO KK, ISLAM R, et al. International
章东迎:调研文献,撰写、修改论文; Conference on Applications and Techniques in Cyber
章永辉:修改、指导修改论文。 Security and Intelligence. Cham:Springer,2020:498-505
[ 9 ] OYTUN M, TINAZCI C, SEKEROGLU B, et al.
Performance prediction and evaluation in female handball
players using machine learning models[J]. IEEE Access,
2020,8:116321-116335
[10] HOOG ANTINK C, BRACZYNSKI A K, GANSE B.
Learning from machine learning: Prediction of age-related
参考文献
athletic performance decline trajectories[J]. GeroScience,
2021,43(5):2547-2559
[ 1 ] BERNARD A B, BUSSE M R. Who wins the Olympic [11] NAGLAH A,KHALIFA F,MAHMOUD A,et al. Athlete-
Games: Economic resources and medal totals[J]. Review customized injury prediction using training load statistical
of Economics and Statistics,2004,86(1):413-417 records and machine learning[C]//2018 IEEE International
[ 2 ] SCHLEMBACH C,SCHMIDT S L,SCHREYER D,et al. Symposium on Signal Processing and Information
Forecasting the Olympic medal distribution:A socioecono- Technology (ISSPIT). Louisville,KY,USA. IEEE,2018:
mic machine learning model[J]. Technological Forecasting 459-464
and Social Change,2022,175:121314 [12] BREIMAN L. Random forests[J]. Machine Learning,
[ 3 ] LUNDBERG S M, ERION G G, LEE S I. Consistent 2001,45:5-32
individualized feature attribution for tree ensembles [13] ATHEY S, TIBSHIRANI J, WAGER S. Generalized
[EB/OL]. [2022-08-30]. http://arxiv.org/abs/1802.03888. random forests[J]. The Annals of Statistics, 2019, 47(2):
pdf 1148-1178
[ 4 ] LUNDBERG S M, LEE S I. A unified approach to [14] WAGER S, ATHEY S. Estimation and inference of
interpreting model predictions[C]//Proceedings of the 31st heterogeneous treatment effects using random forests[J].
International Conference on Neural Information Processing Journal of the American Statistical Association, 2018,
Systems. December 4-9, 2017, Long Beach, California, 113(523):1228-1242
USA. ACM,2017:4768–4777 [15] 李斌,邵新月,李玥阳. 机器学习驱动的基本面量化投资
[ 5 ] 叶春明,赵圣文,杨秀红,等. 基于机器学习的青少年运动 研究[J]. 中国工业经济,2019(8):61-79
员新冠肺炎疫情应对能力分析与预测[J]. 体育学刊, [16] 陈小亮,刘玲君,肖争艳,等. 生产部门通缩与全局性通缩
2020,27(3):68-73 影响因素的差异性研究:机器学习方法的新视角[J]. 中
[ 6 ] 黄元琦,李玉榕,归予恒. 机器学习:运动损伤预防的新途 国工业经济,2021(7):26-44
径[J]. 福建体育科技,2021,40(1):12-18 [17] MOLNAR C, GRUBER S, KOPPER P. Limitations of
[ 7 ] 高素霞. 混沌理论和机器学习算法的运动员成绩预测模 interpretable machine learning methods[EB/OL]. [2022-
型[J]. 现代电子技术,2018,41(7):152-155 08-30]. https://slds-lmu.github.io/iml_methods_limitations
35