Page 162 - 《水产学报》2025年第6期
P. 162
程庚,等 水产学报, 2025, 49(6): 069613
小是限制四倍体能否诱导成功的一个重要因 Qin Y P, Zhang Y H, Zhou Y L, et al. Comparative studies on
素 [14,31–32] 。然而,有研究认为卵细胞大小并不是 triploidy induction using CB and 6-DMAP in Crassostrea
诱导四倍体成功率的限制因素 [15-16] 。直接使用 hongkongensis[J]. Journal of Fisheries of China, 2017, 41(2):
二倍体牡蛎卵子也可成功诱导出四倍体牡蛎, 250-257 (in Chinese).
合适的培养条件为四倍体牡蛎成功获得的关 [ 7 ] 武祥伟, 张跃环, 肖述, 等. CB 诱导熊本牡蛎三倍体及其存活
键 [31] 。通过途径Ⅱ(3n♀+2n♂) 诱导四倍体时, 率与倍化率的变化关系 [J]. 水产学报, 2019, 43(4): 1029-
CB 和低渗处理诱导四倍体得到的幼虫群体主 1037.
要由 2.5N 幼虫和 4N 幼虫组成。而 20 日龄时 Wu X W, Zhang Y H, Xiao S, et al. Triploidy induction by CB
2.5N 幼 虫 存 活 率 仅 1.33%, Guo等 [2] 也 发 现 and their survival rate and triploidy rate in Kumamoto oyster
2.5N 幼虫 7 日龄幼虫存活率为 7.93%,到 3 月 (Crossostrea sikamea)[J]. Journal of Fisheries of China, 2019,
龄稚贝时存活率仅 0.046 3%,说明 2.5N 幼虫在 43(4): 1029-1037 (in Chinese).
幼虫及稚贝期存活率都极低。而低渗处理组幼 [ 8 ] 秦艳平, 张跃环, 莫日馆, 等. 三种香港牡蛎三倍体幼虫诱导
方法的效果比较 [J]. 中国水产科学, 2019, 26(4): 677-685.
虫中 2.5N 比例远大于 CB 处理组,这可能是两
Qin Y P, Zhang Y H, Mo R G, et al. Three comparison meth-
组幼虫存活率产生差异的主要原因。
ods of triploid induction in Crassostrea hongkongensis[J].
本研究综合比较了在 3 种途径下使用 CB
Journal of Fishery Sciences of China, 2019, 26(4): 677-685 (in
和低渗处理两种方法诱导长牡蛎“海大 2 号”四
Chinese).
倍体的生产效果,得到了 3 种途径获得四倍体
[ 9 ] Guo X M, DeBrosse G A, Allen Jr S K. All-triploid Pacific
的 最 佳 诱 导 条 件 , 认 为 使 用 CB 通 过 途 径
oysters (Crassostrea gigas Thunberg) produced by mating tet-
Ⅱ(3n♀+2n♂) 诱导四倍体是生产长牡蛎“海大
raploids and diploids[J]. Aquaculture, 1996, 142(3-4): 149-161.
2 号”四倍体的最佳方法,为长牡蛎“海大 2 号”
[10] Tan S H A, Teh C P, Chang G O, et al. Tetraploid induction in
四倍体群体的培育提供了参考资料。
tropical oysters, Crassostrea belcheri (Sowerby) and
Crassostrea iredalei (Faustino)[J]. Aquaculture Research, 2017,
参考文献
48(4): 1406-1412.
(References):
[ 1 ] Li Q, Liu W G, Shirasu K, et al. Reproductive cycle and bio- [11] 李永国, 李琪, 于瑞海. 长牡蛎“海大 2 号”四倍体的人工诱导
chemical composition of the Zhe oyster Crassostrea plicatula [J]. 水生生物学报, 2021, 45(2): 360-365.
Gmelin in an eastern coastal bay of China[J]. Aquaculture, Li Y G, Li Q, Yu R H. Artificial introduction of tetraploid of
2006, 261(2): 752-759. the new variety of “Haida No. 2”, Crassostrea gigas[J]. Acta
[ 2 ] Guo X, Allen Jr S K. Reproductive potential and genetics of Hydrobiologica Sinica, 2021, 45(2): 360-365 (in Chinese).
triploid Pacific oysters, Crassostrea gigas (Thunberg)[J]. The [12] Guo X M, Allen Jr S K. Viable tetraploids in the Pacific oyster
Biological Bulletin, 1994, 187(3): 309-318. (Crassostrea gigas Thunberg) produced by inhibiting polar
[ 3 ] Dégremont L, Garcia C, Frank-Lawale A, et al. Triploid oysters body 1 in eggs of triploids[J]. Molecular Marine Biology and
in the Chesapeake Bay: comparison of diploid and triploid Biotechnology, 1994, 3(1): 42-50.
Crassostrea virginica[J]. Journal of Shellfish Research, 2012, [13] Eudeline B, Allen Jr S K, Guo X M. Optimization of tetraploid
31(1): 21-31. induction in Pacific oysters, Crassostrea gigas, using first polar
[ 4 ] Allen Jr S K, Downing S L. Performance of triploid Pacific body as a natural indicator[J]. Aquaculture, 2000, 187(1-2): 73-
oysters, Crassostrea gigas (Thunberg). I. Survival, growth, gly- 84.
cogen content, and sexual maturation in yearlings[J]. Journal of [14] Peachey B L, Allen Jr S K. Evaluation of cytochalasin B and 6-
Experimental Marine Biology and Ecology, 1986, 102(2-3): dimethylaminopurine for tetraploidy induction in the Eastern
197-208. oyster, Crassostrea virginica[J]. Aquaculture, 2016, 450: 199-
[ 5 ] Gérard A, Ledu C, Phélipot P, et al. The induction of MI and 205.
MII triploids in the Pacific oyster Crassostrea gigas with 6- [15] Benabdelmouna A, Ledu C. Autotetraploid Pacific oysters
DMAP or CB[J]. Aquaculture, 1999, 174(3-4): 229-242. (Crassostrea gigas) obtained using normal diploid eggs: induc-
[ 6 ] 秦艳平, 张跃环, 周颖力, 等. CB 与 6-DMAP 诱导香港牡蛎 tion and impact on cytogenetic stability[J]. Genome, 2015,
三倍体的效果比较 [J]. 水产学报, 2017, 41(2): 250-257. 58(7): 333-348.
中国水产学会主办 sponsored by China Society of Fisheries https://www.china-fishery.cn
9