Page 426 - 《软件学报》2026年第1期
P. 426

曹金政 等: 格上困难问题量子求解算法综述                                                            423


                 [74]   Zhang F, Pan YB, Hu GR. A three-level sieve algorithm for the shortest vector problem. In: Proc. of the 20th Int’l Conf. on Selected
                      Areas in Cryptography. Burnaby: Springer, 2014. 29–47. [doi: 10.1007/978-3-662-43414-7_2]
                 [75]   Bai  S,  Laarhoven  T,  Stehlè  D.  Tuple  lattice  sieving.  LMS  Journal  of  Computation  and  Mathematics,  2016,  19(Special  Issue  A):
                      146–162. [doi: 10.1112/S1461157016000292]
                 [76]   Herold G, Kirshanova E, Laarhoven T. Speed-ups and time-memory trade-offs for tuple lattice sieving. In: Proc. of the 21st IACR Int’l
                      Conf. on Public-key Cryptography. Rio de Janeiro: Springer, 2018. 407–436. [doi: 10.1007/978-3-319-76578-5_14]
                 [77]   Doulgerakis E, Laarhoven T, de Weger B. Sieve, enumerate, slice, and lift: Hybrid lattice algorithms for SVP via CVPP. In: Proc. of the
                      12th Int’l Conf. on Cryptology in Africa. Cairo: Springer, 2020. 301–320. [doi: 10.1007/978-3-030-51938-4_15]
                 [78]   Montanaro A. Quantum-walk speedup of backtracking algorithms. Theory of Computing, 2018, 14: 15. [doi: 10.4086/toc.2018.v014a015]
                 [79]   Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L, Coles PJ. Variational
                      quantum algorithms. Nature Reviews Physics, 2021, 3(9): 625–644. [doi: 10.1038/s42254-021-00348-9]
                 [80]   Joseph  D,  Ghionis  A,  Ling  C,  Mintert  F.  Not-so-adiabatic  quantum  computation  for  the  shortest  vector  problem.  Physical  Review
                      Research, 2020, 2(1): 013361. [doi: 10.1103/PhysRevResearch.2.013361]
                 [81]   Joseph D, Callison A, Ling C, Mintert F. Two quantum ising algorithms for the shortest-vector problem. Physical Review A, 2021,
                      103(3): 032433. [doi: 10.1103/PhysRevA.103.032433]
                 [82]   Chen YM, Nguyen PQ. BKZ 2.0: Better lattice security estimates. In: Proc. of the 17th Int’l Conf. on the Theory and Application of
                      Cryptology and Information Security. Seoul: Springer, 2011. 1–20. [doi: 10.1007/978-3-642-25385-0_1]
                 [83]   Schnorr CP. A more efficient algorithm for lattice basis reduction. Journal of Algorithms, 1988, 9(1): 47–62. [doi: 10.1016/0196-6774
                      (88)90004-1]
                 [84]   Nguên  PQ,  Stehlè  D.  Floating-point  LLL  revisited.  In:  Proc.  of  the  24th  Annual  Int’l  Conf.  on  the  Theory  and  Applications  of
                      Cryptographic Techniques. Aarhus: Springer, 2005. 215–233. [doi: 10.1007/11426639_13]
                 [85]   Ryan K, Heninger N. Fast practical lattice reduction through iterated compression. In: Proc. of the 43rd Annual Int’l Cryptology Conf.
                      Santa Bar: Springer, 2023. 3–36. [doi: 10.1007/978-3-031-38548-3_1]
                 [86]   Lin D, Xiang ZJ, Xu RQ, Zhang SS, Zeng XY. Optimized quantum implementation of AES. Quantum Information Processing, 2023,
                      22(9): 352. [doi: 10.1007/s11128-023-04043-9]
                 [87]   Bhattacherjee  S,  Hernandez-Castro  JC,  Moyler  J.  A  greedy  global  framework  for  lattice  reduction  using  deep  insertions.  IACR
                      Communications in Cryptology, 2025, 2(1): 1–46. [doi: 10.62056/aevuommol]
                 [88]   Albrecht M, Bai S, Fouque PA, Kirchner P, Stehlé D, Wen W. Faster enumeration-based lattice reduction: Root Hermite factor k 1/(2k)
                          k/8+o(k)
                      time k  . In: Proc. of the 40th Annual Int’l Cryptology Conf. Santa Barbara: Springer, 2023. 186–212. [doi: 10.1007/978-3-030-
                      56880-1_7]
                 [89]   Albrecht MR, Cid C, Faugère JC, Fitzpatrick R, Perret L. On the complexity of the BKW algorithm on LWE. Designs, Codes and
                      Cryptography, 2015, 74(2): 325–354. [doi: 10.1007/s10623-013-9864-x]
                 [90]   Wei Y, Bi L, Lu XH, Wang KP. Security estimation of LWE via BKW algorithms. Cybersecurity, 2023, 6(1): 24. [doi: 10.1186/s42400-
                      023-00158-9]
                 [91]   Guo Q, Johansson T, Mårtensson E, et al. Coded-BKW with sieving. In: Proc. of the 23rd Int’l Conf. on the Theory and Applications of
                      Cryptology  and  Information  Security  (ASIACRYPT  2017).  Hong  Kong:  Springer,  2017.  323–346.  [doi:  10.1007/978-3-319-70694-
                      8_12]
                 [92]   Chang WL, Vasilakos AV. Fundamentals of Quantum Programming in IBM’s Quantum Computers. Cham: Springer, 2021. [doi: 10.
                      1007/978-3-030-63583-1]
                 [93]   Schrottenloher  A.  Quantum  linear  key-recovery  attacks  using  the  QFT.  In:  Proc.  of  the  43rd  Annual  Int’l  Cryptology  Conf.  Santa
                      Barbara: Springer, 2023. 258–291. [doi: 10.1007/978-3-031-38554-4_9]
                 [94]   Dachman-Soled D, Gong HJ, Kippen H, Shahverdi A. BKW meets Fourier new algorithms for LPN with sparse parities. In: Proc. of the
                      19th Theory of Cryptography Conf. Raleigh: Springer, 2021. 658–688. [doi: 10.1007/978-3-030-90453-1_23]
                 [95]   Pouly  A,  Shen  YX.  Provable  dual  attacks  on  learning  with  errors.  In:  Proc.  of  the  43rd  Annual  Int’l  Conf.  on  the  Theory  and
                      Applications of Cryptographic Techniques. Zurich: Springer, 2024. 256–285. [doi: 10.1007/978-3-031-58754-2_10]
                 [96]   Guo Q, Johansson T. Faster dual lattice attacks for solving LWE with applications to CRYSTALS. In: Proc. of the 27th Int’l Conf. on
                      the Theory and Application of Cryptology and Information Security. Singapore: Springer, 2021. 33–62. [doi: 10.1007/978-3-030-92068-
                      5_2]
                 [97]   Lv LH, Yan B, Wang H, Ma Z, Fei YY, Meng XD, Duan QH. Using variational quantum algorithm to solve the LWE problem. Entropy,
                      2022, 24(10): 1428. [doi: 10.3390/e24101428]
   421   422   423   424   425   426   427   428   429   430   431