Page 425 - 《软件学报》2026年第1期
P. 425

422                                                        软件学报  2026  年第  37  卷第  1  期


                 [52]   Kirshanova  E,  Mårtensson  E,  Postlethwaite  EW,  Moulik  SR.  Quantum  algorithms  for  the  approximate  k-list  problem  and  their
                      application to lattice sieving. In: Proc. of the 25th Int’l Conf. on the Theory and Application of Cryptology and Information Security.
                      Kobe: Springer, 2019. 521–551. [doi: 10.1007/978-3-030-34578-5_19]
                 [53]   Albrecht MR, Gheorghiu V, Postlethwaite EW, Schanck JM. Estimating quantum speedups for lattice sieves. In: Proc. of the 26th Int’l
                      Conf. on the Theory and Application of Cryptology and Information Security. Daejeon: Springer, 2020. 583–613. [doi: 10.1007/978-3-
                      030-64834-3_20]
                 [54]   Chailloux A, Loyer J. Lattice sieving via quantum random walks. In: Proc. of the 27th Int’l Conf. on the Theory and Application of
                      Cryptology and Information Security. Singapore: Springer, 2021. 63–91. [doi: 10.1007/978-3-030-92068-5_3]
                 [55]   Bonnetain X, Chailloux A, Schrottenloher A, Shen YX. Finding many collisions via reusable quantum walks. In: Proc. of the 42nd
                      Annual Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Lyon: Springer, 2023. 221–251. [doi: 10.1007/978-3-
                      031-30589-4_8]
                 [56]   Chailloux A, Loyer J. Classical and quantum 3 and 4-sieves to solve SVP with low memory. In: Proc. of the 14th Int’l Conf. on Post-
                      quantum Cryptography. College Park: Springer, 2023. 225–255. [doi: 10.1007/978-3-031-40003-2_9]
                 [57]   Aono Y, Nguyen PQ, Shen YX. Quantum lattice enumeration and tweaking discrete pruning. In: Proc. of the 24th Int’l Conf. on the
                      Theory and Application of Cryptology and Information Security. Australia: Springer, 2018. 405–434. [doi: 10.1007/978-3-030-03326-
                      2_14]
                 [58]   Bai S, van Hoof MI, Johnson FB, Lange T, Ngo T. Concrete analysis of quantum lattice enumeration. In: Proc. of the 29th Int’l Conf. on
                      the Theory and Application of Cryptology and Information Security. Guangzhou: Springer, 2023. 131–166. [doi: 10.1007/978-981-99-
                      8727-6_5]
                 [59]   Bindel  N,  Bonnetain  X,  Tiepelt  M,  Virdia  F.  Quantum  lattice  enumeration  in  limited  depth.  In:  Proc.  of  the  2024  Annual  Int’l
                      Cryptology Conf. Cham: Springer, 2024: 72–106. [doi: 10.1007/978-3-031-68391-6_3]
                 [60]   Albrecht  MR,  Prokop  M,  Shen  YX,  Wallden  P.  Variational  quantum  solutions  to  the  shortest  vector  problem.  Quantum,  2023,  7:
                      933–949. [doi: 10.22331/q-2023-03-02-933]
                 [61]   Tiepelt M, Szepieniec A. Quantum LLL with an application to Mersenne number cryptosystems. In: Proc. of the 6th Int’l Conf. on
                      Cryptology and Information Security in Latin America. Santiago de Chile: Springer, 2019. 3–23. [doi: 10.1007/978-3-030-30530-7_1]
                 [62]   Eldar L, Shor PW. An efficient quantum algorithm for a variant of the closest lattice-vector problem. arXiv:1611.06999, 2016.
                 [63]   Eldar  L,  Hallgren  S.  An  efficient  quantum  algorithm  for  lattice  problems  achieving  subexponential  approximation  factor.
                      arXiv:2201.13450, 2022.
                 [64]   Allen R, Berker RE, Casacuberta S, Gul M. Quantum and classical algorithms for bounded distance decoding. IACR Cryptology ePrint
                      Archive, 2022.195.
                 [65]   Cramer R, Ducas L, Wesolowski B. Short stickelberger class relations and application to ideal-SVP. In: Proc. of the 36th Annual Int’l
                      Conf. on the Theory and Applications of Cryptographic Techniques. Paris: Springer, 2017. 324–348. [doi: 10.1007/978-3-319-56620-
                      7_12]
                 [66]   Cramer R, Ducas L, Wesolowski B. Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. Journal of the ACM,
                      2021, 68(2): 8. [doi: 10.1145/3431725]
                 [67]   Ducas L, Plancon M, Wesolowski B. On the shortness of vectors to be found by the ideal-SVP quantum algorithm. In: Proc. of the 39th
                      Annual Int’l Cryptology Conf. Santa Barbara: Springer, 2019. 322–351. [doi: 10.1007/978-3-030-26948-7_12]
                 [68]   de Boer K, Ducas L, Fehr S. On the quantum complexity of the continuous hidden subgroup problem. In: Proc. of the 39th Annual Int’l
                      Conf. on the Theory and Applications of Cryptographic Techniques. Zagreb: Springer, 2020. 341–370. [doi: 10.1007/978-3-030-45724-
                      2_12]
                 [69]   Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010. [doi: 10.
                      1017/CBO9780511976667]
                 [70]   Dunkelman  O,  Keller  N,  Shamir  A.  Quantum  time/memory/data  tradeoff  attacks.  Designs,  Codes  and  Cryptography,  2024,  92(1):
                      159–177. [doi: 10.1007/s10623-023-01300-x]
                 [71]   Nguyen PQ, Vidick T. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology, 2008, 2(2):
                      181–207. [doi: 10.1515/JMC.2008.009]
                 [72]   Kim H, Jang K, Oh Y, Seok W, Lee W, Bae K, Sohn I, Seo H. Finding shortest vector using quantum NV sieve on Grover. In: Proc. of
                      the 26th Int’l Conf. on Information Security and Cryptology. Seoul: Springer, 2023. 97–118. [doi: 10.1007/978-981-97-1235-9_6]
                 [73]   Wang XY, Liu MJ, Tian CL, Bi JG. Improved Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. In: Proc. of the 6th
                      ACM Symp. on Information, Computer and Communications Security. Hong Kong: ACM, 2021. 1–9. [doi: 10.1145/1966913.1966915]
   420   421   422   423   424   425   426   427   428   429   430