Page 425 - 《软件学报》2026年第1期
P. 425
422 软件学报 2026 年第 37 卷第 1 期
[52] Kirshanova E, Mårtensson E, Postlethwaite EW, Moulik SR. Quantum algorithms for the approximate k-list problem and their
application to lattice sieving. In: Proc. of the 25th Int’l Conf. on the Theory and Application of Cryptology and Information Security.
Kobe: Springer, 2019. 521–551. [doi: 10.1007/978-3-030-34578-5_19]
[53] Albrecht MR, Gheorghiu V, Postlethwaite EW, Schanck JM. Estimating quantum speedups for lattice sieves. In: Proc. of the 26th Int’l
Conf. on the Theory and Application of Cryptology and Information Security. Daejeon: Springer, 2020. 583–613. [doi: 10.1007/978-3-
030-64834-3_20]
[54] Chailloux A, Loyer J. Lattice sieving via quantum random walks. In: Proc. of the 27th Int’l Conf. on the Theory and Application of
Cryptology and Information Security. Singapore: Springer, 2021. 63–91. [doi: 10.1007/978-3-030-92068-5_3]
[55] Bonnetain X, Chailloux A, Schrottenloher A, Shen YX. Finding many collisions via reusable quantum walks. In: Proc. of the 42nd
Annual Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Lyon: Springer, 2023. 221–251. [doi: 10.1007/978-3-
031-30589-4_8]
[56] Chailloux A, Loyer J. Classical and quantum 3 and 4-sieves to solve SVP with low memory. In: Proc. of the 14th Int’l Conf. on Post-
quantum Cryptography. College Park: Springer, 2023. 225–255. [doi: 10.1007/978-3-031-40003-2_9]
[57] Aono Y, Nguyen PQ, Shen YX. Quantum lattice enumeration and tweaking discrete pruning. In: Proc. of the 24th Int’l Conf. on the
Theory and Application of Cryptology and Information Security. Australia: Springer, 2018. 405–434. [doi: 10.1007/978-3-030-03326-
2_14]
[58] Bai S, van Hoof MI, Johnson FB, Lange T, Ngo T. Concrete analysis of quantum lattice enumeration. In: Proc. of the 29th Int’l Conf. on
the Theory and Application of Cryptology and Information Security. Guangzhou: Springer, 2023. 131–166. [doi: 10.1007/978-981-99-
8727-6_5]
[59] Bindel N, Bonnetain X, Tiepelt M, Virdia F. Quantum lattice enumeration in limited depth. In: Proc. of the 2024 Annual Int’l
Cryptology Conf. Cham: Springer, 2024: 72–106. [doi: 10.1007/978-3-031-68391-6_3]
[60] Albrecht MR, Prokop M, Shen YX, Wallden P. Variational quantum solutions to the shortest vector problem. Quantum, 2023, 7:
933–949. [doi: 10.22331/q-2023-03-02-933]
[61] Tiepelt M, Szepieniec A. Quantum LLL with an application to Mersenne number cryptosystems. In: Proc. of the 6th Int’l Conf. on
Cryptology and Information Security in Latin America. Santiago de Chile: Springer, 2019. 3–23. [doi: 10.1007/978-3-030-30530-7_1]
[62] Eldar L, Shor PW. An efficient quantum algorithm for a variant of the closest lattice-vector problem. arXiv:1611.06999, 2016.
[63] Eldar L, Hallgren S. An efficient quantum algorithm for lattice problems achieving subexponential approximation factor.
arXiv:2201.13450, 2022.
[64] Allen R, Berker RE, Casacuberta S, Gul M. Quantum and classical algorithms for bounded distance decoding. IACR Cryptology ePrint
Archive, 2022.195.
[65] Cramer R, Ducas L, Wesolowski B. Short stickelberger class relations and application to ideal-SVP. In: Proc. of the 36th Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. Paris: Springer, 2017. 324–348. [doi: 10.1007/978-3-319-56620-
7_12]
[66] Cramer R, Ducas L, Wesolowski B. Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. Journal of the ACM,
2021, 68(2): 8. [doi: 10.1145/3431725]
[67] Ducas L, Plancon M, Wesolowski B. On the shortness of vectors to be found by the ideal-SVP quantum algorithm. In: Proc. of the 39th
Annual Int’l Cryptology Conf. Santa Barbara: Springer, 2019. 322–351. [doi: 10.1007/978-3-030-26948-7_12]
[68] de Boer K, Ducas L, Fehr S. On the quantum complexity of the continuous hidden subgroup problem. In: Proc. of the 39th Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. Zagreb: Springer, 2020. 341–370. [doi: 10.1007/978-3-030-45724-
2_12]
[69] Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010. [doi: 10.
1017/CBO9780511976667]
[70] Dunkelman O, Keller N, Shamir A. Quantum time/memory/data tradeoff attacks. Designs, Codes and Cryptography, 2024, 92(1):
159–177. [doi: 10.1007/s10623-023-01300-x]
[71] Nguyen PQ, Vidick T. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology, 2008, 2(2):
181–207. [doi: 10.1515/JMC.2008.009]
[72] Kim H, Jang K, Oh Y, Seok W, Lee W, Bae K, Sohn I, Seo H. Finding shortest vector using quantum NV sieve on Grover. In: Proc. of
the 26th Int’l Conf. on Information Security and Cryptology. Seoul: Springer, 2023. 97–118. [doi: 10.1007/978-981-97-1235-9_6]
[73] Wang XY, Liu MJ, Tian CL, Bi JG. Improved Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. In: Proc. of the 6th
ACM Symp. on Information, Computer and Communications Security. Hong Kong: ACM, 2021. 1–9. [doi: 10.1145/1966913.1966915]

