Page 423 - 《软件学报》2026年第1期
P. 423
420 软件学报 2026 年第 37 卷第 1 期
IEEE, 1994. 116–123. [doi: 10.1109/SFCS.1994.365701]
[6] Wang XY, Liu MJ. Survey of Lattice-based cryptography. Journal of Cryptologic Research, 2014, 1(1): 13–27 (in Chinese with English
abstract). [doi: 10.13868/j.cnki.jcr.000002]
[7] Wang C, Yao HN, Wang BN, Hu F, Zhang HG, Ji XM. Progress in quantum computing cryptography attacks. Chinese Journal of
Computers, 2020, 43(9): 1691–1707 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2020.01691]
[8] Chardouvelis O, Goyal V, Jain A, Liu JH. Quantum key leasing for PKE and FHE with a classical lessor. In: Proc. of the 2025 Annual
Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Cham: Springer, 2025: 248–277. [doi: 10.1007/978-3-031-
91131-6_9]
[9] Bos J, Costello C, Ducas L, Mironov I, Naehrig M, Nikolaenko V, Raghunathan A, Stebila D. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. In: Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security.
Vienna: ACM, 2016. 1006–1018. [doi: 10.1145/2976749.2978425]
[10] Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schwabe P, Seiler G, Stehlé D. CRYSTALS-Dilithium: A lattice-based digital signature
scheme. IACR Trans. on Cryptographic Hardware and Embedded Systems, 2018, 2018(1): 238–268. [doi: 10.13154/tches.v2018.i1.238-
268]
[11] Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehle D. CRYSTALS-Kyber: A CCA-secure
module-lattice-based KEM. In: Proc. of the 2018 IEEE European Symp. on Security and Privacy. London: IEEE, 2018. 353–367. [doi:
10.1109/EuroSP.2018.00032]
[12] Wang YR. Research on quantum security for lattice cryptography [Ph.D. Thesis]. Zhengzhou: PLA Strategic Support Force Information
Engineering University, 2023 (in Chinese with English abstract). [doi: 10.27188/d.cnki.gzjxu.2023.000022]
[13] Pan YB, Xu J, Wadleigh N, Cheng Q. On the ideal shortest vector problem over random rational primes. In: Proc. of the 40th Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. Zagreb: Springer, 2021. 559–583. [doi: 10.1007/978-3-030-77870-
5_20]
[14] Regev O. On lattices, learning with errors, random linear codes, and cryptography. In: Proc. of the 37th Annual ACM Symp. on Theory
of Computing. Baltimore: ACM, 2005. 84–93. [doi: 10.1145/1060590.1060603]
[15] van Tilborg HCA, Jajodia S. Encyclopedia of Cryptography and Security. 2nd ed., New York: Springer, 2011. [doi: 10.1007/978-1-4419-
5906-5]
[16] Grover LK. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79(2): 325–328. [doi: 10.
1103/PhysRevLett.79.325]
[17] Tani S. Claw finding algorithms using quantum walk. Theoretical Computer Science, 2009, 410(50): 5285–5297. [doi: 10.1016/j.tcs.
2009.08.030]
[18] Nemec M, Sys M, Svenda P, Klinec D, Matyas V. The return of coppersmith’s attack: Practical factorization of widely used RSA
moduli. In: Proc. of the 2017 ACM SIGSAC Conf. on Computer and Communications Security. Dallas: ACM, 2017. 1631–1648. [doi:
10.1145/3133956.3133969]
[19] Aranha DF, Novaes FR, Takahashi A, Tibouchi M, Yarom Y. LadderLeak: Breaking ECDSA with less than one bit of nonce leakage.
In: Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2020. 225–242. [doi: 10.1145/3372297.
3417268]
[20] Feng TF. Analysis of a quantum attack on the Blum-Micali pseudorandom number generator. IACR Cryptology ePrint Archive,
2023.1639.
[21] Liu WJ, Gao JT. Quantum security of Grain-128/Grain-128a stream cipher against HHL algorithm. Quantum Information Processing,
2021, 20(10): 343. [doi: 10.1007/s11128-021-03275-x]
[22] Wroński M, Burek E, Leśniak M. (In)security of stream ciphers against quantum annealing attacks on the example of the Grain 128 and
Grain 128a ciphers. IEEE Trans. on Emerging Topics in Computing. [doi: 10.1109/TETC.2024.3474856]
[23] Bonnetain X, Schrottenloher A. Single-query quantum hidden shift attacks. IACR Trans. on Symmetric Cryptology, 2024, 2024(3):
266–297. [doi: 10.46586/tosc.v2024.i3.266-297]
[24] Ni BY, Ito G, Dong XY, Iwata T. Quantum attacks against type-1 generalized Feistel ciphers and applications to CAST-256. In: Proc. of
the 20th Int’l Conf. on Cryptology in India. Hyderabad: Springer, 2019. 433–455. [doi: 10.1007/978-3-030-35423-7_22]
[25] Zhang ZY, Sun SW, Wang CB, Hu L. Classical and quantum meet-in-the-middle Nostradamus attacks on AES-like hashing. IACR
Trans. on Symmetric Cryptology, 2023, 2023(2): 224–252. [doi: 10.46586/tosc.v2023.i2.224-252]
[26] Fehr S, Huang YH. On the quantum security of HAWK. In: Proc. of the 14th Int’l Conf. on Post-quantum Cryptography. College Park:
Springer, 2023. 405–416. [doi: 10.1007/978-3-031-40003-2_15]

