Page 346 - 《软件学报》2026年第1期
P. 346
张其阳 等: 卫星边缘计算智能化技术研究进展 343
[73] Cheng XW, Lyu F, Quan W, Zhou CH, He HL, Shi WS, Shen XM. Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. [doi: 10.1109/JSAC.2019.
2906789]
[74] Qin ZY, Yao HP, Mai TL, Wu D, Zhang N, Guo S. Multi-agent reinforcement learning aided computation offloading in aerial computing
for the Internet-of-Things. IEEE Trans. on Services Computing, 2023, 16(3): 1976–1986. [doi: 10.1109/TSC.2022.3190562]
[75] Kim H, Chang YK. Mission scheduling optimization of SAR satellite constellation for minimizing system response time. Aerospace
Science and Technology, 2015, 40: 17–32. [doi: 10.1016/j.ast.2014.10.006]
[76] Cui JT, Zhang X. Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response.
Sensors, 2019, 19(6): 1430. [doi: 10.3390/s19061430]
[77] Cesta A, Ocon J, Rasconi R, Sanchez Montero AM. Simulating on-board autonomy in a multi-agent system with planning and
scheduling. 2010. https://www.researchgate.net/profile/Jorge-Ocon/publication/266222948_Simulating_On-Board_Autonomy_in_a_
Multi-Agent_System_with_Planning_and_Scheduling/links/55487a080cf26a7bf4dac59b/Simulating-On-Board-Autonomy-in-a-Multi-
Agent-System-with-Planning-and-Scheduling.pdf
[78] Grey S. Distributed agents for autonomous spacecraft [MS. Thesis]. Glasgow: University of Glasgow, 2013.
[79] Wang HJ. Massive scheduling method under online situation for satellites based on reinforcement learning [Ph.D. Thesis]. Beijing:
University of Chinese Academy of Sciences (National Space Science Center, CAS), 2018 (in Chinese).
[80] Chien S, Mclaren D, Rabideau G, Silverman D, Mandl D, Hengemihle J, Microtel L. Onboard processing for low-latency science for the
HyspIRI mission. 2010. https://www.researchgate.net/publication/229022061_Onboard_Processing_for_Low-latency_Science_for_the_
HyspIRI_Mission
[81] Agrawal J, Yelamanchili A, Chien S. Using explainable scheduling for the Mars 2020 rover mission. arXiv:2011.08733, 2020.
附中文参考文献
[14] 九九. 下行速率超过 100 Mbps, Starlink 真的能取代 5G 吗? 2022. https://www.51cto.com/article/704582.html
[62] 向尚, 陈盈果, 李国梁, 邢立宁. 卫星自主与协同任务调度规划综述. 自动化学报, 2019, 45(2): 252–264. [doi: 10.16383/j.aas.c180068]
[63] 赵萍, 陈志明. 应用于卫星自主任务调度的改进遗传算法. 中国空间科学技术, 2016, 36(6): 47–54. [doi: 10.16708/j.cnki.1000-
758X.2016.0064]
[67] 庞中华. 高低轨对地观测卫星协同任务规划方法研究 [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
[79] 王海蛟. 基于强化学习的卫星规模化在线调度方法研究 [博士学位论文]. 北京: 中国科学院大学 (中国科学院国家空间科学中心),
2018.
作者简介
张其阳, 博士生, 主要研究领域为卫星计算, 服务计算, 边缘智能.
邢若粼, 博士生, CCF 学生会员, 主要研究领域为卫星计算, 5G/6G 核心网.
李元哲, 博士, CCF 专业会员, 主要研究领域为 5G/6G 核心网, 边缘计算.
周傲, 博士, 副教授, CCF 专业会员, 主要研究领域为卫星计算, 边缘计算, 云计算.
徐梦炜, 博士, 副教授, CCF 专业会员, 主要研究领域为卫星操作系统, 边缘计算.
王尚广, 博士, 教授, CCF 杰出会员, 主要研究领域为卫星计算, 服务计算, 边缘计算.

