Page 346 - 《软件学报》2026年第1期
P. 346

张其阳 等: 卫星边缘计算智能化技术研究进展                                                           343


                 [73]   Cheng XW, Lyu F, Quan W, Zhou CH, He HL, Shi WS, Shen XM. Space/aerial-assisted computing offloading for IoT applications: A
                     learning-based  approach.  IEEE  Journal  on  Selected  Areas  in  Communications,  2019,  37(5):  1117–1129.  [doi:  10.1109/JSAC.2019.
                     2906789]
                 [74]   Qin ZY, Yao HP, Mai TL, Wu D, Zhang N, Guo S. Multi-agent reinforcement learning aided computation offloading in aerial computing
                     for the Internet-of-Things. IEEE Trans. on Services Computing, 2023, 16(3): 1976–1986. [doi: 10.1109/TSC.2022.3190562]
                 [75]   Kim  H,  Chang  YK.  Mission  scheduling  optimization  of  SAR  satellite  constellation  for  minimizing  system  response  time.  Aerospace
                     Science and Technology, 2015, 40: 17–32. [doi: 10.1016/j.ast.2014.10.006]
                 [76]   Cui JT, Zhang X. Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response.
                     Sensors, 2019, 19(6): 1430. [doi: 10.3390/s19061430]
                 [77]   Cesta  A,  Ocon  J,  Rasconi  R,  Sanchez  Montero  AM.  Simulating  on-board  autonomy  in  a  multi-agent  system  with  planning  and
                     scheduling.   2010.   https://www.researchgate.net/profile/Jorge-Ocon/publication/266222948_Simulating_On-Board_Autonomy_in_a_
                     Multi-Agent_System_with_Planning_and_Scheduling/links/55487a080cf26a7bf4dac59b/Simulating-On-Board-Autonomy-in-a-Multi-
                     Agent-System-with-Planning-and-Scheduling.pdf
                 [78]   Grey S. Distributed agents for autonomous spacecraft [MS. Thesis]. Glasgow: University of Glasgow, 2013.
                 [79]   Wang  HJ.  Massive  scheduling  method  under  online  situation  for  satellites  based  on  reinforcement  learning  [Ph.D.  Thesis].  Beijing:
                     University of Chinese Academy of Sciences (National Space Science Center, CAS), 2018 (in Chinese).
                 [80]   Chien S, Mclaren D, Rabideau G, Silverman D, Mandl D, Hengemihle J, Microtel L. Onboard processing for low-latency science for the
                     HyspIRI  mission.  2010.  https://www.researchgate.net/publication/229022061_Onboard_Processing_for_Low-latency_Science_for_the_
                     HyspIRI_Mission
                 [81]   Agrawal J, Yelamanchili A, Chien S. Using explainable scheduling for the Mars 2020 rover mission. arXiv:2011.08733, 2020.

                 附中文参考文献
                 [14]   九九. 下行速率超过  100 Mbps, Starlink  真的能取代  5G  吗? 2022. https://www.51cto.com/article/704582.html
                 [62]   向尚, 陈盈果, 李国梁, 邢立宁. 卫星自主与协同任务调度规划综述. 自动化学报, 2019, 45(2): 252–264. [doi: 10.16383/j.aas.c180068]
                 [63]   赵萍, 陈志明. 应用于卫星自主任务调度的改进遗传算法. 中国空间科学技术, 2016, 36(6): 47–54. [doi: 10.16708/j.cnki.1000-
                     758X.2016.0064]
                 [67]   庞中华. 高低轨对地观测卫星协同任务规划方法研究 [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
                 [79]   王海蛟. 基于强化学习的卫星规模化在线调度方法研究 [博士学位论文]. 北京: 中国科学院大学            (中国科学院国家空间科学中心),
                     2018.

                 作者简介
                 张其阳, 博士生, 主要研究领域为卫星计算, 服务计算, 边缘智能.
                 邢若粼, 博士生, CCF  学生会员, 主要研究领域为卫星计算, 5G/6G   核心网.
                 李元哲, 博士, CCF  专业会员, 主要研究领域为   5G/6G  核心网, 边缘计算.
                 周傲, 博士, 副教授, CCF  专业会员, 主要研究领域为卫星计算, 边缘计算, 云计算.
                 徐梦炜, 博士, 副教授, CCF  专业会员, 主要研究领域为卫星操作系统, 边缘计算.
                 王尚广, 博士, 教授, CCF  杰出会员, 主要研究领域为卫星计算, 服务计算, 边缘计算.
   341   342   343   344   345   346   347   348   349   350   351