Page 344 - 《软件学报》2026年第1期
P. 344

张其阳 等: 卫星边缘计算智能化技术研究进展                                                           341


                     Proc. of the 33rd Int’l Conf. on Machine Learning. New York: JMLR, 2016.
                 [28]   Lin M, Chen C, Lai C. Object detection algorithm based AdaBoost residual correction Fast R-CNN on network. In: Proc. of the 3rd Int’l
                     Conf. on Deep Learning Technologies. 2019. 42–46.
                 [29]   Fratini S, Policella N, Silva R, Guerreiro J. On-board autonomy operations for OPS-SAT experiment. Applied Intelligence, 2022, 52(6):
                     6970–6987. [doi: 10.1007/s10489-020-02158-5]
                 [30]   Verfaillie  G,  Charmeau  MC.  A  generic  modular  architecture  for  the  control  of  an  autonomous  spacecraft.  In:  Proc.  of  the  5th  Int’l
                     Workshop on Planning and Scheduling for Space. Baltimore: Space Telescope Science Institute, 2006.
                 [31]   Van Etten A. You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv:1805.09512, 2018.
                 [32]   Verfaillie G, Lemaitre M. Tutorial on planning activities for earth watching and observation satellites and constellations: From off-line
                     ground planning to on-line on-board planning. 2006. https://icaps06.icapsconference.org/preprints/i06-tu5-allpapers.pdf
                 [33]   Bensana  E,  Verfaillie  G,  Agnese  JC,  Bataille  N,  Blumestein  D.  Exact  and  inexact  methods  for  the  daily  management  of  an  earth
                     observation satellite. In: Proc. of the 1996 Int’l Symp. on Space Mission Operations and Ground Data Systems. 1996. 507–514.
                 [34]   Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters
                     and <0.5 MB model size. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: ICLR, 2017. 1–13.
                 [35]   Zhang XY, Zhou XY, Lin MX, Sun J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: Proc. of
                     the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856. [doi: 10.1109/CVPR.
                     2018.00716]
                 [36]   Yue  Q,  Xu  XL,  Wang  YX,  Tao  YK,  Luo  XLY.  Routing-guided  learned  product  quantization  for  graph-based  approximate  nearest
                     neighbor search. In: Proc. of the 40th IEEE Int’l Conf. on Data Engineering. Utrecht: IEEE, 2024. 4870–4883. [doi: 10.1109/ICDE60146.
                     2024.00370]
                 [37]   Asiyabi RM, Anghel A, Focsa A, Datcu M, Martone M, Rizzoli P, Imbembo E. Adaptation of decoded Sentinel-1 SAR raw data for the
                     assessment of novel data compression methods. In: Proc. of the 2024 IEEE Int’l Geoscience and Remote Sensing Symp. Athens: IEEE,
                     2024. 2541–2545. [doi: 10.1109/IGARSS53475.2024.10642269]
                 [38]   Han  S,  Mao  HZ,  Dally  WJ.  Deep  compression:  Compressing  deep  neural  networks  with  pruning,  trained  quantization  and  huffman
                     coding. arXiv:1510.00149, 2015.
                 [39]   Lin  HP,  Yin  JJ,  Yang  J,  Xu  F.  Interpreting  neural  network  pattern  with  pruning  for  PolSAR  target  recognition.  IEEE  Trans.  on
                     Geoscience and Remote Sensing, 2024, 62: 5227114. [doi: 10.1109/TGRS.2024.3493415]
                 [40]   Zhang WH, Deng WJ, Cui Z, Liu J, Jiao LC. Object knowledge distillation for joint detection and tracking in satellite videos. IEEE Trans.
                     on Geoscience and Remote Sensing, 2024, 62: 4701213. [doi: 10.1109/TGRS.2024.3355933]
                 [41]   Zhou  WJ,  Li  YZ,  Huan  J,  Liu  YY,  Jiang  QP.  MSTNet-KD:  Multilevel  transfer  networks  using  knowledge  distillation  for  the  dense
                     prediction of remote-sensing images. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 4504612. [doi: 10.1109/TGRS.2024.
                     3384669]
                 [42]   Krebs GD. Haisi 1. 2025. https://space.skyrocket.de/doc_sdat/haisi-1.htm
                 [43]   Krebs GD. SATech 01 (Kongjian Xinjishu Shiyan 01). 2025. https://space.skyrocket.de/doc_sdat/satech-01.htm
                 [44]   Zhao  ZR,  Barijough  KM,  Gerstlauer  A.  DeepThings:  Distributed  adaptive  deep  learning  inference  on  resource-constrained  IoT  edge
                     clusters. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2018, 37(11): 2348–2359. [doi: 10.1109/TCAD.
                     2018.2858384]
                 [45]   Kang YP, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang LJ. Neurosurgeon: Collaborative intelligence between the cloud and
                     mobile edge. ACM Sigarch Computer Architecture News, 2017, 45(1): 615–629. [doi: 10.1145/3093337.3037698]
                 [46]   Laskaridis S, Venieris S I, Almeida M, Leontiadis I, Lane ND. SPINN: Synergistic progressive inference of neural networks over device
                     and cloud. In: Proc. of the 26th Annual Int’l Conf. on Mobile Computing and Networking. London: ACM, 2020. 37. [doi: 10.1145/
                     3372224.3419194]
                 [47]   Li E, Zeng LK, Zhou Z, Chen X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Trans. on
                     Wireless Communications, 2020, 19(1): 447–457. [doi: 10.1109/TWC.2019.2946140]
                 [48]   Zhang S, Zhang S, Qian ZZ, Wu J, Jin YB, Lu SL. DeepSlicing: Collaborative and adaptive CNN inference with low latency. IEEE
                     Trans. on Parallel and Distributed Systems, 2021, 32(9): 2175–2187. [doi: 10.1109/TPDS.2021.3058532]
                 [49]   Denby B, Lucia B. Orbital edge computing: Nanosatellite constellations as a new class of computer system. In: Proc. of the 25th Int’l
                     Conf. on Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM, 2020. 939–954. [doi: 10.1145/
                     3373376.3378473]
                 [50]   Denby B, Chintalapudi K, Chandra R, Lucia B, Noghabi S. Kodan: Addressing the computational bottleneck in space. In: Proc. of the
   339   340   341   342   343   344   345   346   347   348   349