Page 344 - 《软件学报》2026年第1期
P. 344
张其阳 等: 卫星边缘计算智能化技术研究进展 341
Proc. of the 33rd Int’l Conf. on Machine Learning. New York: JMLR, 2016.
[28] Lin M, Chen C, Lai C. Object detection algorithm based AdaBoost residual correction Fast R-CNN on network. In: Proc. of the 3rd Int’l
Conf. on Deep Learning Technologies. 2019. 42–46.
[29] Fratini S, Policella N, Silva R, Guerreiro J. On-board autonomy operations for OPS-SAT experiment. Applied Intelligence, 2022, 52(6):
6970–6987. [doi: 10.1007/s10489-020-02158-5]
[30] Verfaillie G, Charmeau MC. A generic modular architecture for the control of an autonomous spacecraft. In: Proc. of the 5th Int’l
Workshop on Planning and Scheduling for Space. Baltimore: Space Telescope Science Institute, 2006.
[31] Van Etten A. You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv:1805.09512, 2018.
[32] Verfaillie G, Lemaitre M. Tutorial on planning activities for earth watching and observation satellites and constellations: From off-line
ground planning to on-line on-board planning. 2006. https://icaps06.icapsconference.org/preprints/i06-tu5-allpapers.pdf
[33] Bensana E, Verfaillie G, Agnese JC, Bataille N, Blumestein D. Exact and inexact methods for the daily management of an earth
observation satellite. In: Proc. of the 1996 Int’l Symp. on Space Mission Operations and Ground Data Systems. 1996. 507–514.
[34] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters
and <0.5 MB model size. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: ICLR, 2017. 1–13.
[35] Zhang XY, Zhou XY, Lin MX, Sun J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: Proc. of
the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856. [doi: 10.1109/CVPR.
2018.00716]
[36] Yue Q, Xu XL, Wang YX, Tao YK, Luo XLY. Routing-guided learned product quantization for graph-based approximate nearest
neighbor search. In: Proc. of the 40th IEEE Int’l Conf. on Data Engineering. Utrecht: IEEE, 2024. 4870–4883. [doi: 10.1109/ICDE60146.
2024.00370]
[37] Asiyabi RM, Anghel A, Focsa A, Datcu M, Martone M, Rizzoli P, Imbembo E. Adaptation of decoded Sentinel-1 SAR raw data for the
assessment of novel data compression methods. In: Proc. of the 2024 IEEE Int’l Geoscience and Remote Sensing Symp. Athens: IEEE,
2024. 2541–2545. [doi: 10.1109/IGARSS53475.2024.10642269]
[38] Han S, Mao HZ, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman
coding. arXiv:1510.00149, 2015.
[39] Lin HP, Yin JJ, Yang J, Xu F. Interpreting neural network pattern with pruning for PolSAR target recognition. IEEE Trans. on
Geoscience and Remote Sensing, 2024, 62: 5227114. [doi: 10.1109/TGRS.2024.3493415]
[40] Zhang WH, Deng WJ, Cui Z, Liu J, Jiao LC. Object knowledge distillation for joint detection and tracking in satellite videos. IEEE Trans.
on Geoscience and Remote Sensing, 2024, 62: 4701213. [doi: 10.1109/TGRS.2024.3355933]
[41] Zhou WJ, Li YZ, Huan J, Liu YY, Jiang QP. MSTNet-KD: Multilevel transfer networks using knowledge distillation for the dense
prediction of remote-sensing images. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 4504612. [doi: 10.1109/TGRS.2024.
3384669]
[42] Krebs GD. Haisi 1. 2025. https://space.skyrocket.de/doc_sdat/haisi-1.htm
[43] Krebs GD. SATech 01 (Kongjian Xinjishu Shiyan 01). 2025. https://space.skyrocket.de/doc_sdat/satech-01.htm
[44] Zhao ZR, Barijough KM, Gerstlauer A. DeepThings: Distributed adaptive deep learning inference on resource-constrained IoT edge
clusters. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2018, 37(11): 2348–2359. [doi: 10.1109/TCAD.
2018.2858384]
[45] Kang YP, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang LJ. Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge. ACM Sigarch Computer Architecture News, 2017, 45(1): 615–629. [doi: 10.1145/3093337.3037698]
[46] Laskaridis S, Venieris S I, Almeida M, Leontiadis I, Lane ND. SPINN: Synergistic progressive inference of neural networks over device
and cloud. In: Proc. of the 26th Annual Int’l Conf. on Mobile Computing and Networking. London: ACM, 2020. 37. [doi: 10.1145/
3372224.3419194]
[47] Li E, Zeng LK, Zhou Z, Chen X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Trans. on
Wireless Communications, 2020, 19(1): 447–457. [doi: 10.1109/TWC.2019.2946140]
[48] Zhang S, Zhang S, Qian ZZ, Wu J, Jin YB, Lu SL. DeepSlicing: Collaborative and adaptive CNN inference with low latency. IEEE
Trans. on Parallel and Distributed Systems, 2021, 32(9): 2175–2187. [doi: 10.1109/TPDS.2021.3058532]
[49] Denby B, Lucia B. Orbital edge computing: Nanosatellite constellations as a new class of computer system. In: Proc. of the 25th Int’l
Conf. on Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM, 2020. 939–954. [doi: 10.1145/
3373376.3378473]
[50] Denby B, Chintalapudi K, Chandra R, Lucia B, Noghabi S. Kodan: Addressing the computational bottleneck in space. In: Proc. of the

