Page 345 - 《软件学报》2026年第1期
P. 345
342 软件学报 2026 年第 37 卷第 1 期
28th ACM Int’l Conf. on Architectural Support for Programming Languages and Operating Systems, Vol. 3. Vancouver: ACM, 2023.
392–403. [doi: 10.1145/3582016.3582043]
[51] Tao B, Chabra O, Janveja I, Gupta I, Vasisht D. Known knowns and unknowns: Near-realtime earth observation via query bifurcation in
serval. In: Proc. of the 21st USENIX Symp. on Networked Systems Design and Implementation. Santa: USENIX, 2024. 809–824.
[52] Wang SG, Zhang QY, Xing RL, Qi F, Xu MW. The first verification test of space-ground collaborative intelligence via cloud-native
satellites. China Communications, 2024, 21(4): 208–217. [doi: 10.23919/JCC.fa.2022-0422.202404]
[53] Ji JH, Zhong BJ, Wu QH, Ma KK. A channel-wise multi-scale network for single image super-resolution. IEEE Signal Processing Letters,
2024, 31: 805–809. [doi: 10.1109/LSP.2024.3372781]
[54] Wang XD, Li SF, Kallidromitis K, Kato Y, Kozuka K, Darrell T. Hierarchical open-vocabulary universal image segmentation. In: Proc.
of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 936. [doi: 10.5555/
3666122.3667058]
[55] Zhang QY, Yuan X, Xing RL, Zhang YR, Zheng ZM, Ma X, Xu MW, Dustdar S, Wang SG. Resource-efficient in-orbit detection of earth
objects. In: Proc. of the 2024 IEEE Conf. on Computer Communications. Vancouver: IEEE, 2024. 551–560. [doi: 10.1109/
INFOCOM52122.2024]
[56] So J, Hsieh K, Arzani B, Noghabi S, Avestimehr S, Chandra R. FedSpace: An efficient federated learning framework at satellites and
ground stations. arXiv:2202.01267, 2022.
[57] Nguyen J, Malik K, Zhan HY, Yousefpour A, Rabbat M, Malek M, Huba D. Federated learning with buffered asynchronous aggregation.
In: Proc. of the 25th Int’l Conf. on Artificial Intelligence and Statistics. Valencia: PMLR, 2022. 3581–3607.
[58] Yang C, Yuan JL, Wu YZ, Sun QB, Zhou A, Wang SG, Xu MW. Communication-efficient satellite-ground federated learning through
progressive weight quantization. IEEE Trans. on Mobile Computing, 2024, 23(9): 8999–9011. [doi: 10.1109/TMC.2024.3358804]
[59] Razmi N, Matthiesen B, Dekorsy A, Popovski P. Ground-assisted federated learning in LEO satellite constellations. IEEE Wireless
Communications Letters, 2022, 11(4): 717–721. [doi: 10.1109/LWC.2022.3141120]
[60] Tang FX, Wen C, Chen XH, Kato N. Federated learning for intelligent transmission with space-air-ground integrated network toward 6G.
IEEE Network, 2023, 37(2): 198–204. [doi: 10.1109/MNET.104.2100615]
[61] Zhang HY, Zhao HB, Liu RK, Gao XQ, Xu SZ. Leader federated learning optimization using deep reinforcement learning for distributed
satellite edge intelligence. IEEE Trans. on Services Computing, 2024, 17(5): 2544–2557. [doi: 10.1109/TSC.2024.3376256]
[62] Xiang S, Chen YG, Li GL, Xing LN. Review on satellite autonomous and collaborative task scheduling planning. Acta Automatica
Sinica, 2019, 45(2): 252–264 (in Chinese with English abstract). [doi: 10.16383/j.aas.c180068]
[63] Zhao P, Chen ZM. An adapted genetic algorithm applied to satellite autonomous task scheduling. Chinese Space Science and Technology,
2016, 36(6): 47–54 (in Chinese with English abstract). [doi: 10.16708/j.cnki.1000-758X.2016.0064]
[64] Damiani S, Verfaillie G, Charmeau MC. An earth watching satellite constellation: How to manage a team of watching agents with limited
communications. In: Proc. of the 4th Int’l Joint Conf. on Autonomous Agents and Multiagent Systems. New York: ACM, 2005. 455–462.
[doi: 10.1145/1082473.1082543]
[65] Cao XL, Yang B, Shen YL, Yuen C, Zhang Y, Han Z, Poor HV, Hanzo L. Edge-assisted multi-layer offloading optimization of LEO
satellite-terrestrial integrated networks. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 381–398. [doi: 10.1109/JSAC.
2022.3227032]
[66] Zhu XM, Jiang CX. Delay optimization for cooperative multi-tier computing in integrated satellite-terrestrial networks. IEEE Journal on
Selected Areas in Communications, 2023, 41(2): 366–380. [doi: 10.1109/JSAC.2022.3227083]
[67] Pang ZH. Research on collaborative mission planning method for high and low earth observation satellites [MS. Thesis]. Harbin: Harbin
Institute of Technology, 2013 (in Chinese).
[68] Li JT, Zhang S, Liu XL, He RJ. Multi–objective evolutionary optimization for geostationary orbit satellite mission planning. Journal of
Systems Engineering and Electronics, 2017, 28(5): 934–945. [doi: 10.21629/JSEE.2017.05.11]
[69] Zhang XY, Liu J, Zhang R, Huang YD, Tong JC, Xin N, Liu L, Xiong ZH. Energy-efficient computation peer offloading in satellite edge
computing networks. IEEE Trans. on Mobile Computing, 2024, 23(4): 3077–3091. [doi: 10.1109/TMC.2023.3269801]
[70] Chen Q, Meng WX, Quek TQS, Chen SY. Multi-tier hybrid offloading for computation-aware IoT applications in civil aircraft-
augmented SAGIN. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 399–417. [doi: 10.1109/JSAC.2022.3227031]
[71] Bensana E, Verfaillie G, Agnese J C, Bataille N. Exact and inexact methods for daily management of earth observation satellite. In: Proc.
of the 1996 Conf. on Space Mission Operations and Ground Data Systems. 1996. 394–507.
[72] Sarkheyli A, Bagheri A, Ghorbani-Vaghei B, Askari-Moghadam R. Using an effective tabu search in interactive resources scheduling
problem for LEO satellites missions. Aerospace Science and Technology, 2013, 29(1): 287–295. [doi: 10.1016/j.ast.2013.04.001]

