Page 343 - 《软件学报》2026年第1期
P. 343

340                                                        软件学报  2026  年第  37  卷第  1  期


                  [4]   Lucia B, Denby B, Manchester Z, Desai H, Ruppel E, Colin A. Computational nanosatellite constellations: Opportunities and challenges.
                     GetMobile: Mobile Computing and Communications, 2021, 25(1): 16–23. [doi: 10.1145/3471440.3471446]
                  [5]   Xu MW, Fu Z, Ma X, Zhang L, Li YN, Qian F, Wang SG, Li K, Yang JY, Liu XZ. From cloud to edge: A first look at public edge
                     platforms. In: Proc. of the 21st ACM Internet Measurement Conf. ACM, 2021. 37–53. [doi: 10.1145/3487552.3487815]
                  [6]   Bhattacherjee D, Kassing S, Licciardello M, Singla A. In-orbit computing: An outlandish thought experiment? In: Proc. of the 19th ACM
                     Workshop on Hot Topics in Networks. ACM, 2020. 197–204. [doi: 10.1145/3422604.3425937]
                  [7]   Xing RL, Xu MW, Zhou A, Li Q, Zhang YR, Qian F, Wang SG. Deciphering the enigma of satellite computing with COTS devices:
                     Measurement and analysis. In: Proc. of the 30th Annual Int’l Conf. on Mobile Computing and Networking. Washington: ACM, 2024.
                     420–435. [doi: 10.1145/3636534.3649371]
                  [8]   Kassem  MM,  Raman  A,  Perino  D,  Sastry  N.  A  browser-side  view  of  Starlink  connectivity.  In:  Proc.  of  the  22nd  ACM  Internet
                     Measurement Conf. Nice: ACM, 2022. 151–158. [doi: 10.1145/3517745.3561457]
                  [9]   Michel  F,  Trevisan  M,  Giordano  D,  Bonaventure  O.  A  first  look  at  Starlink  performance.  In:  Proc.  of  the  22nd  ACM  Internet
                     Measurement Conf. Nice: ACM, 2022. 130–136. [doi: 10.1145/3517745.3561416]
                 [10]   Ma  S,  Chou  Y  C,  Zhao  HY,  Chen  L,  Ma  XQ,  Liu  JC.  Network  characteristics  of  LEO  satellite  constellations:  A  Starlink-based
                     measurement  from  end  users.  In:  Proc.  of  the  2023  IEEE  Annual  Joint  Conf.:  INFOCOM,  IEEE  Computer  and  Communications
                     Societies. New York: IEEE, 2023. 1–10. [doi: 10.1109/INFOCOM53939.2023.10228912]
                 [11]   Ye  B,  Mo  LH,  Liu  T,  Sun  YM,  Liu  J.  Influence  of  orbital  parameters  on  SEU  rate  of  low-energy  proton  in  nano-SRAM  device.
                     Symmetry, 2020, 12(12): 2030. [doi: 10.3390/sym12122030]
                 [12]   Wang SG, Li Q, Xu MW, Ma X, Zhou A, Sun QB. Tiansuan constellation: An open research platform. In: Proc. of the 2021 IEEE Int’l
                     Conf. on Edge Computing. Chicago: IEEE, 2021. 94–101. [doi: 10.1109/EDGE53862.2021.00022]
                 [13]   Panagopoulos  AD,  Arapoglou  PDM,  Cottis  PG.  Satellite  communications  at  Ku,  Ka,  and  V  bands:  Propagation  impairments  and
                     mitigation techniques. IEEE Communications Surveys & Tutorials, 2004, 6(3): 2–14. [doi: 10.1109/COMST.2004.5342290]
                 [14]   Jiujiu. Given its downlink rate exceeding 100 Mbps, is Starlink a viable alternative to 5G? 2022 (in Chinese). https://www.51cto.com/
                     article/704582.html
                 [15]   Terrasanta G, Ziarko MW, Bergamasco N, Poot M, Poliak J. Simulating optical single event transients on silicon photonic waveguides for
                     satellite communication. IEEE Trans. on Nuclear Science, 2024, 71(2): 176–183. [doi: 10.1109/TNS.2024.3353489]
                 [16]   Landauer DC, Lovelly TM. Performance evaluation of the radiation-tolerant NVIDIA Tegra K1 system-on-chip. In: Proc. of the 2023
                     IEEE Space Computing Conf. Pasadena: IEEE, 2023. 24–33. [doi: 10.1109/SCC57168.2023.00014]
                 [17]   Li ZQ, Jing XY, Zhu XK, Zhang HY. Heterogeneous defect prediction through multiple kernel learning and ensemble learning. In: Proc.
                     of the 2017 IEEE Int’l Conf. on Software Maintenance and Evolution. Shanghai: IEEE, 2017. 91–102. [doi: 10.1109/ICSME.2017.19]
                 [18]   El-Hajjar M, Hanzo L. A survey of digital television broadcast transmission techniques. IEEE Communications Surveys & Tutorials,
                     2013, 15(4): 1924–1949. [doi: 10.1109/SURV.2013.030713.00220]
                 [19]   Wang F, Jiang DD, Wang ZH, Chen JG, Quek TQS. Seamless handover in LEO based non-terrestrial networks: Service continuity and
                     optimization. IEEE Trans. on Communications, 2023, 71(2): 1008–1023. [doi: 10.1109/TCOMM.2022.3229014]
                 [20]   Zhang QY, Che XY, Chen YJ, Ma X, Xu MW, Dustdar S, Liu XZ, Wang SG. A comprehensive deep learning library benchmark and
                     optimal library selection. IEEE Trans. on Mobile Computing, 2024, 23(5): 5069–5082. [doi: 10.1109/TMC.2023.3301973]
                 [21]   Huang CY, Ye P, Chen T, He T, Yue XY, Ouyang WL. EMR-merging: Tuning-free high-performance model merging. In: Proc. of the
                     38th Annual Conf. on Neural Int’l Processing Systems. Vancouver: NeurIPS, 2024. 122741–122769.
                 [22]   Albashish D, Al-Sayyed R, Abdullah A, Ryalat MH, Almansour NA. Deep CNN model based on VGG16 for breast cancer classification.
                     In: Proc. of the 2021 Int’l Conf. on Information Technology. Amman: IEEE, 2021. 805–810. [doi: 10.1109/ICIT52682.2021.9491631]
                 [23]   Wu JX, Leng C, Wang YH, Hu QH, Cheng J. Quantized convolutional neural networks for mobile devices. In: Proc. of the 2016 IEEE
                     Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 4820–4828. [doi: 10.1109/CVPR.2016.521]
                 [24]   Jacob B, Kligys S, Chen B, Zhu ML, Tang M, Howard A, Adam H, Kalenichenko D. Quantization and training of neural networks for
                     efficient integer-arithmetic-only inference. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake
                     City: IEEE, 2018. 2704–2713. [doi: 10.1109/CVPR.2018.00286]
                 [25]   Bharati P, Pramanik A. Deep learning techniques—R-CNN to mask R-CNN: A survey. In: Das AK, Nayak J, Naik B, eds. Computational
                     Intelligence in Pattern Recognition. Singapore: Springer, 2020. 657–668. [doi: 10.1007/978-981-13-9042-5_56]
                 [26]   Girshick R, Jeff D, Trevor D, Jitendra M. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proc. of
                     the 2014 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 2014. 580–587.
                 [27]   Yu W, Yang KY, Bai YL, Xiao TJ, Yao HX, Rui Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In:
   338   339   340   341   342   343   344   345   346   347   348