Page 43 - 《软件学报》2025年第12期
P. 43

5424                                                      软件学报  2025  年第  36  卷第  12  期


                  Sciences, Beijing 100190, China)
                 4
                 (Software Security and Trustworthiness Laboratory, Nanjing Institute of Software Technology, Nanjing 211135, China)
                 5
                 (University of Chinese Academy of Sciences, Beijing 100049, China)
                 Abstract:  With  the  rapid  development  of  autonomous  driving  technology,  the  issue  of  vehicle  control  takeover  has  become  a  prominent
                 research  topic.  A  car  equipped  with  an  assisted  driving  system  cannot  fully  handle  all  driving  scenarios.  When  the  actual  driving  scenario
                 exceeds the operational design domain of the assisted system, human intervention is still required to control the vehicle and ensure the safe
                 completion  of  the  driving  task.  Takeover  performance  is  an  extremely  important  metric  for  evaluating  a  driver’s  performance  during  the
                 takeover  process,  which  includes  takeover  reaction  time  and  takeover  quality.  The  takeover  reaction  time  refers  to  the  time  from  the
                 system’s  takeover  request  to  the  driver’s  control  of  the  steering  wheel.  The  length  of  the  takeover  response  time  not  only  reflects  the
                 driver’s  current  state  but  also  affects  the  subsequent  handling  of  complex  scenarios.  Takeover  quality  refers  to  the  quality  of  manual
                 vehicle  operation  by  the  driver  after  regaining  control.  This  study,  based  on  the  CARLA  driving  simulator,  constructs  6  typical  driving
                 scenarios, simulates the vehicle control takeover process, and collects physiological signals and eye movement data from 31 drivers using a
                 multi-channel  acquisition  system.  Based  on  the  driver’s  takeover  performance,  and  regarding  International  standards,  an  objective  takeover
                 performance  evaluation  metric  is  proposed,  incorporating  the  driver’s  takeover  reaction  time,  maximum  horizontal  and  vertical
                 accelerations, and minimum collision time, derived from multiple vehicle data. By combining driver data, vehicle data, and scenario data, a
                 deep  neural  network  (DNN)  model  predicts  takeover  performance,  while  the  SHAP  model  analyzes  the  impact  of  each  feature,  improving
                 the model’s interpretability and transparency. The experimental results show that the proposed DNN model outperforms traditional machine
                 learning  methods  in  predicting  takeover  performance,  achieving  an  accuracy  of  92.2%  and  demonstrating  good  generalization.  The  SHAP
                 analysis  reveals  the  impact  of  key  features  such  as  heart  rate  variability,  driving  experience,  and  minimum  safe  distance  on  the  prediction
                 results.  This  research  provides  a  theoretical  and  empirical  foundation  for  the  safety  optimization  and  human-computer  interaction  design  of
                 autonomous  driving  systems  and  is  of  great  significance  for  improving  the  efficiency  and  safety  of  human-vehicle  cooperation  in
                 autonomous driving technology.
                 Key words:  autonomous driving; takeover performance; deep neural network (DNN); interpretability; human-machine interface
                    自动驾驶技术的迅猛发展使得人车合作变成了更加现实、紧迫的课题                         [1] . 根据  SAE  分级  [2] , 可以将自动驾驶
                 分为  6  个等级, 其中  L0  为手动驾驶, L5  为完全自动驾驶, 当前可应用在真实交通场景下的自动驾驶等级一般在
                 L3  以下. 自动驾驶汽车联合摄像头、GPS、雷达和激光雷达等传感器感知环境数据, 通过规划模块规划行驶路线,
                 最后执行模块执行相应的驾驶动作. L3            为有条件自动驾驶, 其辅助驾驶系统 (advanced driving assistance system,
                 ADS) 在驾驶过程中允许驾驶员暂时解放双手、减轻驾驶负荷, 执行一些阅读、饮食等与驾驶无关的任务 (non
                 driving related task, NDRT) [3,4] . 受限于当前自动驾驶技术和法律规定, 在超出自动驾驶系统的操作设计域 (operation
                 design domain, ODD) 时需要驾驶员对车辆进行接管并驾驶, 驾驶员仍旧是驾驶过程中重要的一环. 在这种情况下,
                 自动驾驶系统需要发出接管请求            (take over request, TOR), 并通过视觉、听觉或触觉的方式提醒驾驶员, 以便驾驶
                 员能及时接管车辆保障行车安全            [5] . 在一些安全攸关的场景下     (如即将发生碰撞、礼让行人等), 驾驶员的接管行
                 为的好坏对驾驶安全有着至关重要的影响               [6] . 因此, 评估并预测驾驶员的接管行为, 确保驾驶员再次从事非驾驶任
                 务时能够安全地接管车辆控制权具有重要意义.
                    评价接管行为的好坏主要通过接管绩效进行衡量, 通常来讲, 接管绩效主要包括接管反应时间和接管质量两
                 方面. 接管反应时间是指系统发出接管请求后到驾驶员控制方向盘的时间开销, 接管反应时间长短不仅一定程度
                 上反映了当前驾驶员的状态, 还对后续面对复杂场景进行操作也有一定影响. 接管质量是指驾驶员获得车辆控制
                 权后手动驾驶车辆的质量. 近年来, 面向有条件自动驾驶情况下的接管研究大多专注于探究不同的接管提醒方
                 式  [7] 、接管提醒时间  [8] 、接管场景  [9] 对接管质量的影响, 对接管质量的绩效研究相对较少. 部分学者对接管质量进
                 行了预测但并未对影响接管质量的因素进行分析                 [10] . 同时, 接管质量的衡量目前还不具备统一的标准, 因而亟需
                 对接管绩效进行判定, 并探究不同接管因素对接管绩效的影响.
                    在自动驾驶领域, 接管数据的获取面临着多重挑战, 不仅涉及复杂的多通道数据采集设备的需求, 还需实现这
                 些设备与仿真平台之间的无缝对接, 以确保人-机-设备间的时间同步精度. 此外, 鉴于该领域的特殊性, 当自动驾
                 驶系统遇到难以自行解决的驾驶情境时, 会发出接管请求, 这对驾驶员快速且准确的接管能力提出了极高的要求.
   38   39   40   41   42   43   44   45   46   47   48