Page 417 - 《软件学报》2025年第12期
P. 417
5798 软件学报 2025 年第 36 卷第 12 期
5 总 结
针对车载自组织网络中基础设施稀疏、车辆分布不均匀、车辆的高度动态性以及轨迹难以预测等问题, 本文
提出一种基于历史交通数据驱动的 VANET 智能路由算法. 该算法将地理区域划分为大小一致的网格, 针对不同
目的地计算出车辆从当前网格向不同方向的邻居网格移动的 Q 值, 每辆车存储由 Q-learning 计算得到的用于路径
选择的转发表, 车辆通过查询转发表来选择下一路径, 然后根据车辆的位置代价、链路的生存性以及路由空洞得
到的转发代价找到代价最小者作为下一中继车辆. 通过与现有方法进行实验对比, 研究结果表明: HTD-IR 在
VANET 中具有良好的路由性能, 表现出高投递率、低时延、高网络收益率和低开销的特点. 在未来的工作中, 我
们将继续对算法进行优化, 如在 V2V 方式中对车辆选择策略进行优化, 在道路交叉口处考虑车辆的行驶方向和轨
迹对未来数据包传输的贡献, 进一步提高算法效率.
References:
[1] Qazzaz MMH, Zaidi SAR, McLernon DC, Hayajneh AM, Salama A, Aldalahmeh SA. Non-terrestrial UAV clients for beyond 5G
networks: A comprehensive survey. Ad Hoc Networks, 2024, 157: 103440. [doi: 10.1016/j.adhoc.2024.103440]
[2] Hawbani A, Wang XF, Al-Dubai A, Zhao L, Busaileh O, Liu P, Al-Qaness MAA. A novel heuristic data routing for urban vehicular ad
hoc networks. IEEE Internet of Things Journal, 2021, 8(11): 8976–8989. [doi: 10.1109/JIOT.2021.3055504]
[3] Tan HW, Zheng WY, Vijayakumar P, Sakurai K, Kumar N. An efficient vehicle-assisted aggregate authentication scheme for
infrastructure-less vehicular networks. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(12): 15590–15600. [doi: 10.1109/
TITS.2022.3176406]
[4] Rehman GU, Ghani A, Muhammad S, Singh M, Singh D. Selfishness in vehicular delay-tolerant networks: A review. Sensors, 2020,
20(10): 3000. [doi: 10.3390/s20103000]
[5] Rui LL, Yan ZB, Tan ZY, Gao ZP, Yang Y, Chen XY, Liu HY. An intersection-based QoS routing for vehicular ad hoc networks with
reinforcement learning. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(9): 9068–9083. [doi: 10.1109/TITS.2023.3271456]
[6] Zhou MM, Liu L, Sun YS, Wang K, Dong MX, Atiquzzaman M, Dustdar S. On vehicular ad-hoc networks with full-duplex radios: An
end-to-end delay perspective. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(10): 10912–10922. [doi: 10.1109/TITS.2023.
3279322]
[7] Chithaluru P, Uyyala R, Singh A, Alfarraj O, Lopez LA, Khatak S, Alkhayyat AH. A lightweight energy-efficient routing scheme for real-
time WSN-VANET-based applications. IEEE Trans. on Consumer Electronics, 2024, 70(1): 3820–3826. [doi: 10.1109/TCE.2024.
3371230]
[8] Khan Z, Koubaa A, Benjdira B. A heuristic route planning scheme in scalable VANET-oriented evolving grid graph (S-VoEGG). IEEE
Trans. on Network Science and Engineering, 2024, 11(4): 3851–3865. [doi: 10.1109/TNSE.2024.3389657]
[9] Zhang DG, Wang JX, Zhang J, Zhang T, Yang C, Jiang KW. A new method of fuzzy multicriteria routing in vehicle ad hoc network.
IEEE Trans. on Computational Social Systems, 2023, 10(6): 3181–3193. [doi: 10.1109/TCSS.2022.3193739]
[10] Xia YJ, Liu XJ, Ou J, Ma OB. RLID-V: Reinforcement learning-based information dissemination policy generation in VANETs. IEEE
Trans. on Intelligent Transportation Systems, 2023, 24(12): 14151–14161. [doi: 10.1109/TITS.2023.3300948]
[11] Yu CM, Ku ML, Wang LC. Joint topology construction and hybrid routing strategy on load balancing for bluetooth low energy networks.
IEEE Internet of Things Journal, 2021, 8(8): 7101–7102. [doi: 10.1109/JIOT.2021.3051561]
[12] Sun MT, Chu CH, Wu EHK, Hsiao CS, Jeng AAK. Distributed topology control for energy-efficient and reliable wireless
communications. IEEE Systems Journal, 2018, 12(3): 2152–2161. [doi: 10.1109/JSYST.2017.2673830]
[13] Adil M, Song HB, Ali J, Jan MA, Attique M, Abbas S, Farouk A. Enhanced-AODV: A robust three phase priority-based traffic load
balancing scheme for Internet of Things. IEEE Internet of Things Journal, 2022, 9(16): 14426–14437. [doi: 10.1109/JIOT.2021.3072984]
[14] Awais M, Ali I, Alghamdi TA, Ramzan M, Tahir M, Akbar M, Javaid N. Towards void hole alleviation: Enhanced geographic and
opportunistic routing protocols in harsh underwater WSNs. IEEE Access, 2020, 8: 96592–96605. [doi: 10.1109/ACCESS.2020.2996367]
[15] Torrieri D, Talarico S, Valenti MC. Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Trans. on
Communications, 2015, 63(11): 4276–4286. [doi: 10.1109/TCOMM.2015.2477337]
[16] Huang HJ, Yin H, Min GY, Zhang JB, Wu YL, Zhang X. Energy-aware dual-path geographic routing to bypass routing holes in wireless
sensor networks. IEEE Trans. on Mobile Computing, 2018, 17(6): 1339–1352. [doi: 10.1109/TMC.2017.2771424]
[17] Huang HJ, Yin H, Min GY, Zhang X, Zhu WX, Wu YL. Coordinate-assisted routing approach to bypass routing holes in wireless sensor

