Page 417 - 《软件学报》2025年第12期
P. 417

5798                                                      软件学报  2025  年第  36  卷第  12  期


                  5   总 结

                    针对车载自组织网络中基础设施稀疏、车辆分布不均匀、车辆的高度动态性以及轨迹难以预测等问题, 本文
                 提出一种基于历史交通数据驱动的             VANET  智能路由算法. 该算法将地理区域划分为大小一致的网格, 针对不同
                 目的地计算出车辆从当前网格向不同方向的邻居网格移动的                     Q  值, 每辆车存储由    Q-learning  计算得到的用于路径
                 选择的转发表, 车辆通过查询转发表来选择下一路径, 然后根据车辆的位置代价、链路的生存性以及路由空洞得
                 到的转发代价找到代价最小者作为下一中继车辆. 通过与现有方法进行实验对比, 研究结果表明: HTD-IR                                 在
                 VANET  中具有良好的路由性能, 表现出高投递率、低时延、高网络收益率和低开销的特点. 在未来的工作中, 我
                 们将继续对算法进行优化, 如在          V2V  方式中对车辆选择策略进行优化, 在道路交叉口处考虑车辆的行驶方向和轨
                 迹对未来数据包传输的贡献, 进一步提高算法效率.

                 References:
                  [1]   Qazzaz  MMH,  Zaidi  SAR,  McLernon  DC,  Hayajneh  AM,  Salama  A,  Aldalahmeh  SA.  Non-terrestrial  UAV  clients  for  beyond  5G
                     networks: A comprehensive survey. Ad Hoc Networks, 2024, 157: 103440. [doi: 10.1016/j.adhoc.2024.103440]
                  [2]   Hawbani A, Wang XF, Al-Dubai A, Zhao L, Busaileh O, Liu P, Al-Qaness MAA. A novel heuristic data routing for urban vehicular ad
                     hoc networks. IEEE Internet of Things Journal, 2021, 8(11): 8976–8989. [doi: 10.1109/JIOT.2021.3055504]
                  [3]   Tan  HW,  Zheng  WY,  Vijayakumar  P,  Sakurai  K,  Kumar  N.  An  efficient  vehicle-assisted  aggregate  authentication  scheme  for
                     infrastructure-less vehicular networks. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(12): 15590–15600. [doi: 10.1109/
                     TITS.2022.3176406]
                  [4]   Rehman GU, Ghani A, Muhammad S, Singh M, Singh D. Selfishness in vehicular delay-tolerant networks: A review. Sensors, 2020,
                     20(10): 3000. [doi: 10.3390/s20103000]
                  [5]   Rui LL, Yan ZB, Tan ZY, Gao ZP, Yang Y, Chen XY, Liu HY. An intersection-based QoS routing for vehicular ad hoc networks with
                     reinforcement learning. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(9): 9068–9083. [doi: 10.1109/TITS.2023.3271456]
                  [6]   Zhou MM, Liu L, Sun YS, Wang K, Dong MX, Atiquzzaman M, Dustdar S. On vehicular ad-hoc networks with full-duplex radios: An
                     end-to-end delay perspective. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(10): 10912–10922. [doi: 10.1109/TITS.2023.
                     3279322]
                  [7]   Chithaluru P, Uyyala R, Singh A, Alfarraj O, Lopez LA, Khatak S, Alkhayyat AH. A lightweight energy-efficient routing scheme for real-
                     time  WSN-VANET-based  applications.  IEEE  Trans.  on  Consumer  Electronics,  2024,  70(1):  3820–3826.  [doi:  10.1109/TCE.2024.
                     3371230]
                  [8]   Khan Z, Koubaa A, Benjdira B. A heuristic route planning scheme in scalable VANET-oriented evolving grid graph (S-VoEGG). IEEE
                     Trans. on Network Science and Engineering, 2024, 11(4): 3851–3865. [doi: 10.1109/TNSE.2024.3389657]
                  [9]   Zhang DG, Wang JX, Zhang J, Zhang T, Yang C, Jiang KW. A new method of fuzzy multicriteria routing in vehicle ad hoc network.
                     IEEE Trans. on Computational Social Systems, 2023, 10(6): 3181–3193. [doi: 10.1109/TCSS.2022.3193739]
                 [10]   Xia YJ, Liu XJ, Ou J, Ma OB. RLID-V: Reinforcement learning-based information dissemination policy generation in VANETs. IEEE
                     Trans. on Intelligent Transportation Systems, 2023, 24(12): 14151–14161. [doi: 10.1109/TITS.2023.3300948]
                 [11]   Yu CM, Ku ML, Wang LC. Joint topology construction and hybrid routing strategy on load balancing for bluetooth low energy networks.
                     IEEE Internet of Things Journal, 2021, 8(8): 7101–7102. [doi: 10.1109/JIOT.2021.3051561]
                 [12]   Sun  MT,  Chu  CH,  Wu  EHK,  Hsiao  CS,  Jeng  AAK.  Distributed  topology  control  for  energy-efficient  and  reliable  wireless
                     communications. IEEE Systems Journal, 2018, 12(3): 2152–2161. [doi: 10.1109/JSYST.2017.2673830]
                 [13]   Adil M, Song HB, Ali J, Jan MA, Attique M, Abbas S, Farouk A. Enhanced-AODV: A robust three phase priority-based traffic load
                     balancing scheme for Internet of Things. IEEE Internet of Things Journal, 2022, 9(16): 14426–14437. [doi: 10.1109/JIOT.2021.3072984]
                 [14]   Awais  M,  Ali  I,  Alghamdi  TA,  Ramzan  M,  Tahir  M,  Akbar  M,  Javaid  N.  Towards  void  hole  alleviation:  Enhanced  geographic  and
                     opportunistic routing protocols in harsh underwater WSNs. IEEE Access, 2020, 8: 96592–96605. [doi: 10.1109/ACCESS.2020.2996367]
                 [15]   Torrieri D, Talarico S, Valenti MC. Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Trans. on
                     Communications, 2015, 63(11): 4276–4286. [doi: 10.1109/TCOMM.2015.2477337]
                 [16]   Huang HJ, Yin H, Min GY, Zhang JB, Wu YL, Zhang X. Energy-aware dual-path geographic routing to bypass routing holes in wireless
                     sensor networks. IEEE Trans. on Mobile Computing, 2018, 17(6): 1339–1352. [doi: 10.1109/TMC.2017.2771424]
                 [17]   Huang HJ, Yin H, Min GY, Zhang X, Zhu WX, Wu YL. Coordinate-assisted routing approach to bypass routing holes in wireless sensor
   412   413   414   415   416   417   418   419   420   421   422