Page 261 - 《软件学报》2025年第12期
P. 261
5642 软件学报 2025 年第 36 卷第 12 期
[12] Zhang TC, Tian X, Sun XH, Yu MH, Sun YH, Yu G. Overview on knowledge graph embedding technology research. Ruan Jian Xue
Bao/Journal of Software, 2023, 34(1): 277–311 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6429.htm [doi: 10.
13328/j.cnki.jos.006429]
[13] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proc. of the 28th AAAI Conf. on
Artificial Intelligence. Québec: AAAI Press, 2014. 1112–1119.
[14] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In: Proc. of the 33rd Int’l Conf.
on Machine Learning. New York: JMLR.org, 2016. 2071–2080.
[15] Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: Proc. of the 28th Int’l Conf. on
Machine Learning. Bellevue: Omnipress, 2011. 809–816.
[16] Yang BS, Yih WT, He XD, Gao JF, Deng L. Embedding entities and relations for learning and inference in knowledge bases.
arXiv:1412.6575, 2014.
[17] Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M. Modeling relational data with graph convolutional networks. In:
Proc. of the 15th Int’l Conf. on the Semantic Web. Heraklion: Springer, 2018. 593–607. [doi: 10.1007/978-3-319-93417-4_38]
[18] Vashishth S, Sanyal S, Nitin V, Talukdar P. Composition-based multi-relational graph convolutional networks. arXiv:1911.03082, 2020.
[19] Xie RB, Liu ZY, Jia J, Luan HB, Sun MS. Representation learning of knowledge graphs with entity descriptions. In: Proc. of the 30th
AAAI Conf. on Artificial Intelligence. Phoenix: AAAI Press, 2016. 2659–2665. [doi: 10.1609/aaai.v30i1.10329]
[20] Yao L, Mao CS, Luo Y. KG-BERT: BERT for knowledge graph completion. arXiv:1909.03193, 2019.
[21] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Minneapolis: ACL, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
[22] Teru KK, Denis EG, Hamilton WL. Inductive relation prediction by subgraph reasoning. In: Proc. of the 37th Int’l Conf. on Machine
Learning. Vienna: PMLR, 2020. 9448–9457.
[23] Zha HW, Chen ZY, Yan XF. Inductive relation prediction by BERT. In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. Palo
Alto: AAAI Press, 2022. 5923–5931. [doi: 10.1609/aaai.v36i5.20537]
[24] Geng YX, Chen JY, Pan JZ, Chen MY, Jiang S, Zhang W. Relational message passing for fully inductive knowledge graph completion.
In: Proc. of the 39th IEEE Int’l Conf. on Data Engineering. Anaheim: IEEE, 2023. 1221–1233. [doi: 10.1109/ICDE55515.2023.00098]
[25] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
[26] Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv:1607.06450, 2016.
[27] Lovász L. Random walks on graphs: A survey. 1993. https://cs.yale.edu/publications/techreports/tr1029.pdf
[28] Su JL, Ahmed M, Lu Y, Pan SF, Bo W, Liu YF. RoFormer: Enhanced Transformer with rotary position embedding. Neurocomputing,
2024, 568: 127063. [doi: 10.1016/j.neucom.2023.127063]
[29] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proc. of the 37th
Int’l Conf. on Machine Learning. Vienna: PMLR, 2020. 1597–1607.
[30] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring human
knowledge. In: Proc. of the 2008 ACM SIGMOD Int’l Conf. on Management of Data. Vancouver: ACM, 2008. 1247–1250. [doi: 10.1145/
1376616.1376746]
[31] Toutanova K, Chen DQ, Pantel P, Poon H, Choudhury P, Gamon M. Representing text for joint embedding of text and knowledge bases.
In: Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics,
2015. 1499–1509. [doi: 10.18653/v1/D15-1174]
[32] Pennington J, Socher R, Manning C. GloVe: Global vectors for word representation. In: Proc. of the 2014 Conf. on Empirical Methods in
Natural Language Processing. Doha: ACL, 2014. 1532–1543. [doi: 10.3115/v1/D14-1162]
[33] Balažević I, Allen C, Hospedales T. TuckER: Tensor factorization for knowledge graph completion. In: Proc. of the 2019 Conf. on
Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing. Hong Kong: ACL,
2019. 5185–5194. [doi: 10.18653/v1/D19-1522]
[34] Zhu YQ, Wang XH, Chen J, Qiao SF, Ou YX, Yao YZ, Deng SM, Chen HJ, Zhang NY. LLMs for knowledge graph construction and
reasoning: Recent capabilities and future opportunities. arXiv:2305.13168, 2023.
[35] Bhargava P, Drozd A, Rogers A. Generalization in NLI: Ways (not) to go beyond simple heuristics. arXiv:2110.01518, 2021.
[36] Turc I, Chang MW, Lee K, Toutanova K. Well-read students learn better: On the importance of pre-training compact models.
arXiv:1908.08962, 2019.

