Page 263 - 《软件学报》2025年第12期
P. 263

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(12):5644−5673 [doi: 10.13328/j.cnki.jos.007402] [CSTR: 32375.14.jos.007402]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                            *
                 多语义视图驱动的               OWL     知识图谱表示学习方法

                 杨建喜  1 ,    谢江村  1 ,    李    韧  1 ,    杨小霞  2 ,    肖    桥  2 ,    蒋仕新  1 ,    贺丽荣  1


                 1
                  (重庆交通大学 信息科学与工程学院, 重庆 400074)
                 2
                  (重庆交通大学 交通运输学院, 重庆 400074)
                 通信作者: 李韧, E-mail: renli@cqjtu.edu.cn

                 摘 要: 针对当前     OWL  知识表示学习方法存在的概念层和实例层复杂语义信息联合表征能力不足等问题, 提出一
                 种概念-属性-实例多语义视图驱动的           OWL  图谱知识表示学习方法        (MSV-KRL). 该方法采用“多语义视图划分、语
                 义感知自监督进阶训练、多任务联合表示学习”的                  3  阶段架构. 首先, MSV-KRL    在  OWL2Vec*的基础上, 优化
                 OWL  到  RDF  图结构的映射策略, 提出     5  类细粒度语义视图划分策略. 其次, 通过语义视图内随机游走和标注属性
                 替换策略, 生成序列化进阶训练数据, 并开展预训练模型的自监督进阶训练, 以提升其面向多语义视图上下文的适
                 配能力. 最后, 在多任务学习框架下, 通过多语义视图预测任务联合优化损失, 实现对                       OWL  知识图谱中概念、属性
                 和实例复杂语义有效表示学习. 实验结果表明, MSV-KRL              在多个基准数据集上的表现优于现有先进的知识表示学
                 习方法, 且能适配于多种语言模型, 有效提升            OWL  复杂语义的知识表示能力.
                 关键词: 知识表示学习; OWL      知识图谱; 多语义视图; 进阶训练; 多任务学习
                 中图法分类号: TP182


                 中文引用格式: 杨建喜, 谢江村, 李韧, 杨小霞, 肖桥, 蒋仕新, 贺丽荣. 多语义视图驱动的OWL知识图谱表示学习方法. 软件学报,
                 2025, 36(12): 5644–5673. http://www.jos.org.cn/1000-9825/7402.htm
                 英文引用格式: Yang JX, Xie JC, Li R, Yang XX, Xiao Q, Jiang SX, He LR. OWL Knowledge Graph Representation Learning Method
                 via Multi-semantic View. Ruan Jian Xue Bao/Journal of Software, 2025, 36(12): 5644–5673 (in Chinese). http://www.jos.org.cn/1000-
                 9825/7402.htm

                 OWL Knowledge Graph Representation Learning Method via Multi-semantic View
                                                            2
                                              1
                                        1
                                                                                   1
                            1
                                                                      2
                 YANG Jian-Xi , XIE Jiang-Cun , LI Ren , YANG Xiao-Xia , XIAO Qiao , JIANG Shi-Xin , HE Li-Rong 1
                 1
                 (School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
                 2
                 (College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China)
                 Abstract:  To  address  the  issues  in  current  OWL  representation  learning  methods,  which  lack  the  ability  to  jointly  represent  complex
                 semantic  information  across  both  the  concept  layer  and  the  instance  layer,  an  OWL  representation  learning  approach  using  multi-semantic
                 views  of  concepts,  properties,  and  instances  is  proposed.  The  proposed  method  adopts  a  three-stage  architecture  including  multi-semantic
                 views  partitioning,  semantic-aware  self-supervised  post-training,  and  joint  multi-task  representation  learning.  First,  MSV-KRL  optimizes  the
                 mapping  strategy  from  OWL  to  RDF  graphs  based  on  OWL2Vec*,  and  five  fine-grained  semantic  view  partitioning  strategies  are
                 proposed.  Subsequently,  serialized  post-training  data  is  generated  through  the  random  walk  and  annotated  attribute  replacement  strategy.
                 The  self-supervised  post-training  of  the  pre-trained  model  is  then  carried  out  to  enhance  adaptability  to  multi-semantic  views.  Finally,  by
                 employing  a  multi-task  learning  strategy,  the  complex  semantic  representation  learning  of  concepts,  properties,  and  instances  in  OWL
                 graphs  is  achieved  through  joint  optimization  loss  of  multi-semantic  view  prediction  tasks.  Experimental  results  demonstrate  that  MSV-
                 KRL  outperforms  baseline  representation  learning  methods  on  multiple  benchmarks.  MSV-KRL  can  be  adapted  to  multiple  language
                 models, significantly improving the knowledge representation capability of OWL’s complex semantics.


                 *    基金项目: 国家自然科学基金  (62003063); 重庆市教委科学技术研究重大项目  (KJZD-M202300703); 重庆市自然科学基金面上项目  (CSTB
                  2023NSCQ-MSX0145); 重庆市教委科学技术研究青年项目    (KJQN202200720)
                  收稿时间: 2024-07-03; 修改时间: 2024-10-31, 2024-12-30; 采用时间: 2025-02-11; jos 在线出版时间: 2025-07-09
                  CNKI 网络首发时间: 2025-07-10
   258   259   260   261   262   263   264   265   266   267   268