Page 241 - 《软件学报》2025年第12期
P. 241

5622                                                      软件学报  2025  年第  36  卷第  12  期


                 [17]   Du XY, Liu MW, Shen LW, Peng X. Survey on representation learning methods of knowledge graph for link prediction. Ruan Jian Xue
                      Bao/Journal of Software, 2024, 35(1): 87–117 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6902.htm [doi: 10.
                      13328/j.cnki.jos.006902]
                 [18]   Wu  GD,  Liu  HW,  He  ZW,  Li  JX,  Wang  XN.  Review  of  knowledge  graph  completion  technology.  Journal  of  Chinese  Computer
                      Systems, 2023, 44(3): 471–482 (in Chinese with English abstract). [doi: 10.20009/j.cnki.21-1106/TP.2022-0423]
                 [19]   Wu  TX,  Qi  GL,  Li  C,  Wang  M.  A  survey  of  techniques  for  constructing  Chinese  knowledge  graphs  and  their  applications.
                      Sustainability, 2018, 10(9): 3245. [doi: 10.3390/su10093245]
                 [20]   Lin YK, Han X, Xie RB, Liu ZY, Sun MS. Knowledge representation learning: A quantitative review. arXiv:1812.10901, 2018.
                 [21]   Socher R, Chen DQ, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Proc. of the 27th
                      Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 926–934.
                 [22]   Gesese GA, Biswas R, Alam M, Sack H. A survey on knowledge graph embeddings with literals: Which model links better literal-ly?
                      Semantic Web, 2021, 12(4): 617–647. [doi: 10.3233/SW-200404]
                 [23]   Chen Z, Wang YH, Zhao B, Cheng J, Zhao X, Duan ZT. Knowledge graph completion: A review. IEEE Access, 2020, 8: 192435–
                      192456. [doi: 10.1109/ACCESS.2020.3030076]
                 [24]   Zamini M, Reza H, Rabiei M. A review of knowledge graph completion. Information, 2022, 13(8): 396. [doi: 10.3390/info13080396]
                 [25]   Peng YF, Zhang RS, Wang RH, Guo JL. Survey on few-shot knowledge graph completion technology. Journal of Frontiers of Computer
                      Science and Technology, 2023, 17(6): 1268–1284 (in Chinese with English abstract). [doi: 10.3778/j.issn.1673-9418.2209069]
                 [26]   Wang JP, Wang BY, Qiu MK, Pan SR, Xiong B, Liu H, Luo LH, Liu TF, Hu YL, Yin BC, Gao W. A survey on temporal knowledge
                      graph completion: Taxonomy, progress, and prospects. arXiv:2308.02457, 2023.
                 [27]   Cai BR, Xiang Y, Gao LX, Zhang H, Li YF, Li JX. Temporal knowledge graph completion: A survey. In: Proc. of the 32nd Int’l Joint
                      Conf. on Artificial Intelligence. Macao: IJCAI, 2023. 6545–6553.
                 [28]   Kejriwal  M.  Advanced  topic:  Knowledge  graph  completion.  In:  Kejriwal  M,  ed.  Domain-specific  Knowledge  Graph  Construction.
                      Cham: Springer, 2019. 59–74. [doi: 10.1007/978-3-030-12375-8_4]
                 [29]   Cai HY, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans.
                      on Knowledge and Data Engineering, 2018, 30(9): 1616–1637. [doi: 10.1109/TKDE.2018.2807452]
                 [30]   Shah H, Villmow J, Ulges A, Schwanecke U, Shafait F. An open-world extension to knowledge graph completion models. In: Proc. of
                      the 33rd AAAI Conf. on Artificial Intelligence, 2019. 3044–3051. [doi: 10.1609/aaai.v33i01.33013044]
                 [31]   Zhu WP, Zhi XL, Tong WQ. Extracting short entity descriptions for open-world extension to knowledge graph completion models. In:
                      Proc. of the 13th Int’l Conf. on Knowledge Science, Engineering and Management. Hangzhou: Springer, 2020. 16–27. [doi: 10.1007/
                      978-3-030-55130-8_2]
                 [32]   Zhou YY, Shi S, Huang HY. Weighted aggregator for the open-world knowledge graph completion. In: Proc. of the 6th Int’l Conf. of
                      Pioneering Computer Scientists, Engineers and Educators on Data Science. Taiyuan: Springer, 2020. 283–291. [doi: 10.1007/978-981-
                      15-7981-3_19]
                 [33]   Wang  JB,  Lei  J,  Sun  SN,  Guo  K.  Embeddings  based  on  relation-specific  constraints  for  open  world  knowledge  graph  completion.
                      Applied Intelligence, 2023, 53(12): 16192–16204. [doi: 10.1007/s10489-022-04247-z]
                 [34]   Shi  BX,  Weninger  T.  Open-world  knowledge  graph  completion.  In:  Proc.  of  the  32nd  AAAI  Conf.  on  Artificial  Intelligence.  New
                      Orleans: AAAI, 2018. 1957–1964. [doi: 10.1609/aaai.v32i1.11535]
                 [35]   Niu  L,  Fu  CP,  Yang  Q,  Li  ZX,  Chen  ZG,  Liu  QS,  Zheng  K.  Open-world  knowledge  graph  completion  with  multiple  interaction
                      attention. World Wide Web, 2021, 24(1): 419–439. [doi: 10.1007/s11280-020-00847-2]
                 [36]   Yao L, Mao CS, Luo Y. KG-BERT: BERT for knowledge graph completion. arXiv:1909.03193, 2019.
                 [37]   Kim B, Hong T, Ko Y, Seo J. Multi-task learning for knowledge graph completion with pre-trained language models. In: Proc. of the
                      28th Int’l Conf. on Computational Linguistics. Barcelona: Int’l Committee on Computational Linguistics, 2020. 1737–1743. [doi: 10.
                      18653/v1/2020.coling-main.153]
                 [38]   Choi B, Jang D, Ko Y. MEM-KGC: Masked entity model for knowledge graph completion with pre-trained language model. IEEE
                      Access, 2021, 9: 132025–132032. [doi: 10.1109/ACCESS.2021.3113329]
                 [39]   Yao L, Peng JZ, Mao CS, Luo Y. Exploring large language models for knowledge graph completion. arXiv:2308.13916, 2023.
                 [40]   Zhang YC, Chen Z, Guo LB, Xu YJ, Zhang W, Chen HJ. Making large language models perform better in knowledge graph completion.
                      In: Proc. of the 32nd ACM Int’l Conf. on Multimedia. Melbourne: ACM, 2024. 233–242. [doi: 10.1145/3664647.3681327]
                 [41]   Xu DR, Zhang ZH, Lin ZX, Wu X, Zhu ZH, Xu T, Zhao XY, Zheng YF, Chen EH. Multi-perspective improvement of knowledge graph
   236   237   238   239   240   241   242   243   244   245   246