Page 242 - 《软件学报》2025年第12期
P. 242

郑修林 等: 知识图谱补全技术及应用                                                              5623


                      completion with large language models. In: Proc. of the 2024 Joint Int’l Conf. on Computational Linguistics, Language Resources and
                      Evaluation (LREC-COLING 2024). Torino: ELRA, ICCL, 2024. 11956–11968.
                 [42]   Shu D, Chen TL, Jin MY, Zhang C, Du MN, Zhang YF. Knowledge graph large language model (KG-LLM) for link prediction. In:
                      Proc. of the 16th Asian Conf. on Machine Learning. Hanoi: ACML, 2024. 143–158.
                 [43]   Xiong WH, Yu M, Chang SY, Guo XX, Wang WY. One-shot relational learning for knowledge graphs. In: Proc. of the 2018 Conf. on
                      Empirical Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 1980–1990. [doi: 10.
                      18653/v1/D18-1223]
                 [44]   Zhang CX, Yao HX, Huang C, Jiang M, Li ZH, Chawla NV. Few-shot knowledge graph completion. In: Proc. of the 34th AAAI Conf.
                      on Artificial Intelligence. New York: AAAI, 2020. 3041–3048. [doi: 10.1609/aaai.v34i03.5698]
                 [45]   Sheng  JW,  Guo  S,  Chen  ZY,  Yue  JW,  Wang  LH,  Liu  TW,  Xu  HB.  Adaptive  attentional  network  for  few-shot  knowledge  graph
                      completion.  In:  Proc.  of  the  2020  Conf.  on  Empirical  Methods  in  Natural  Language  Processing.  Association  for  Computational
                      Linguistics, 2020. 1681–1691. [doi: 10.18653/v1/2020.emnlp-main.131]
                 [46]   Liang Y, Zhao S, Cheng B, Yin YW, Yang H. Exploring entity interactions for few-shot relation learning (student abstract). In: Proc. of
                      the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 13003–13004. [doi: 10.1609/aaai.v36i11.21638]
                 [47]   Huisman M, van Rijn JN, Plaat A. A survey of deep meta-learning. Artificial Intelligence Review, 2021, 54(6): 4483–4541. [doi: 10.
                      1007/s10462-021-10004-4]
                 [48]   Sun QR, Liu YY, Chua TS, Schiele B. Meta-transfer learning for few-shot learning. In: Proc. of the 2019 IEEE/CVF Conf. on Computer
                      Vision and Pattern Recognition. Long Beach: IEEE, 2019. 403–412. [doi: 10.1109/CVPR.2019.00049]
                 [49]   Chen MY, Zhang W, Zhang W, Chen Q, Chen HJ. Meta relational learning for few-shot link prediction in knowledge graphs. In: Proc.
                      of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing.
                      Hong Kong: Association for Computational Linguistics, 2019. 4216–4225. [doi: 10.18653/v1/D19-1431]
                 [50]   Niu GL, Li Y, Tang CG, Geng RY, Dai J, Liu Q, Wang H, Sun J, Huang F, Si L. Relational learning with gated and attentive neighbor
                      aggregator for few-shot knowledge graph completion. In: Proc. of the 44th Int’l ACM SIGIR Conf. on Research and Development in
                      Information Retrieval. ACM, 2021. 213–222. [doi: 10.1145/3404835.3462925]
                 [51]   Wu H, Yin J, Rajaratnam B, Guo JY. Hierarchical relational learning for few-shot knowledge graph completion. In: Proc. of the 11th Int’l
                      Conf. on Learning Representations. Kigali: OpenReview.net, 2023.
                 [52]   Zheng SJ, Mai SJ, Sun Y, Hu HF, Yang YD. Subgraph-aware few-shot inductive link prediction via meta-learning. IEEE Trans. on
                      Knowledge and Data Engineering, 2023, 35(6): 6512–6517. [doi: 10.1109/TKDE.2022.3177212]
                 [53]   Lv X, Gu YX, Han X, Hou L, Li JZ, Liu ZY. Adapting meta knowledge graph information for multi-hop reasoning over few-shot
                      relations. In: Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural
                      Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 3374–3379. [doi: 10.18653/v1/
                      D19-1334]
                 [54]   Zhang CX, Yu L, Saebi M, Jiang M, Chawla N. Few-shot multi-hop relation reasoning over knowledge bases. In: Proc. of the 2020
                      Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 2020. 580–585. [doi: 10.18653/v1/
                      2020.findings-emnlp.51]
                 [55]   Zhang YM, Qian YY, Ye YF, Zhang CX. Adapting distilled knowledge for few-shot relation reasoning over knowledge graphs. In:
                      Proc. of the 2022 SIAM Int’l Conf. on Data Mining. Alexandria: Society for Industrial and Applied Mathematics, 2022. 666–674. [doi:
                      10.1137/1.9781611977172.75]
                 [56]   Zheng SF, Chen W, Zhao PP, Liu A, Fang JH, Zhao L. When hardness makes a difference: Multi-hop knowledge graph reasoning over
                      few-shot relations. In: Proc. of the 30th ACM Int’l Conf. on Information & Knowledge Management. ACM, 2021. 2688–2697. [doi: 10.
                      1145/3459637.3482402]
                 [57]   Qin PD, Wang X, Chen WH, Zhang CY, Xu WR. Generative adversarial zero-shot relational learning for knowledge graphs. In: Proc. of
                      the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 8673–8680. [doi: 10.1609/aaai.v34i05.6392]
                 [58]   Du ZX, Zhou C, Ding M, Yang HX, Tang J. Cognitive knowledge graph reasoning for one-shot relational learning. arXiv:1906.05489,
                      2019.
                 [59]   Zhang  NY,  Deng  SM,  Sun  ZL,  Chen  JY,  Zhang  W,  Chen  HJ.  Relation  adversarial  network  for  low  resource  knowledge  graph
                      completion. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 1–12. [doi: 10.1145/3366423.3380089]
                 [60]   Xie  HC,  Li  AP,  Jia  Y.  Few-shot  knowledge  reasoning  method  based  on  attention  mechanism.  In:  Proc.  of  the  8th  Int’l  Conf.  on
                      Computing and Pattern Recognition. Beijing: ACM, 2019. 46–51. [doi: 10.1145/3373509.3373574]
   237   238   239   240   241   242   243   244   245   246   247