Page 240 - 《软件学报》2025年第12期
P. 240

郑修林 等: 知识图谱补全技术及应用                                                              5621


                 大成功. 但也因易产生幻觉和对捕获的事实知识缺乏可解释性而限制了其在医疗诊断等高风险场景中的应用. 传
                 统的  KGC  技术基于结构化知识表示和推理能够增强               LLM  获取知识的可解释性, 但是对新事实表示缺乏丰富的
                 语义, 而  LLM  能够提供丰富的语义表示. 因此, 大语言模型时代, KGC             技术研究仍然具有重要意义. 两者, 相辅相
                 成, 相互增强是当下及未来值得研究的课题.
                  9   结 论

                    本文根据模型构建过程所需样本的数量对已有的                  KGC  模型进行了分类, 即零样本        KGC  模型、少样本    KGC
                 模型和多样本     KGC  模型, 并对每类模型进行了全面的分析和讨论, 指出了它们的优点和不足, 并通过实验加以验
                 证. 同时例举   KGC  技术的一般应用和华谱系统中的具体实现. 基于以上调研, 本文总结了当下                        KGC  模型的不足
                 和展望了   KGC  未来可能的研究方向, 以期对未来          KGC  研究提供一些基本的借鉴和参考.

                 References:
                  [1]   Steiner T, Verborgh R, Troncy R, Gabarró J, van de Walle R. Adding realtime coverage to the Google knowledge graph. In: Proc. of the
                      2012 Int’l Conf. on Posters & Demonstrations Track. Boston: CEUR-WS.org, 2012. 65–68.
                  [2]   Liu K, Zhao J, He SZ, Zhang YZ. Question answering over knowledge bases. IEEE Intelligent Systems, 2015, 30(5): 26–35. [doi: 10.
                      1109/MIS.2015.70]
                  [3]   Guo QM, Wang X, Zhu ZF, Liu PY, Xu LC. A knowledge inference model for question answering on an incomplete knowledge graph.
                      Applied Intelligence, 2023, 53(7): 7634–7646. [doi: 10.1007/s10489-022-03927-0]
                  [4]   Bi X, Nie HJ, Zhao XG, Yuan Y, Wang GR. Reinforcement learning inference techniques for knowledge graph constrained question
                      answering. Ruan Jian Xue Bao/Journal of Software, 2023, 34(10): 4565–4583 (in Chinese with English abstract). http://www.jos.org.cn/
                      1000-9825/6889.htm [doi: 10.13328/j.cnki.jos.006889]
                  [5]   Qiao SJ, Yang GP, Yu Y, Han N, Tan X, Qu LL, Ran LQ, Li H. QA-KGNet: Language model-driven knowledge graph question-
                      answering model. Ruan Jian Xue Bao/Journal of Software, 2023, 34(10): 4584–4600 (in Chinese with English abstract). http://www.jos.
                      org.cn/1000-9825/6882.htm [doi: 10.13328/j.cnki.jos.006882]
                  [6]   Jannach D, Manzoor A, Cai WL, Chen L. A survey on conversational recommender systems. ACM Computing Surveys (CSUR), 2022,
                      54(5): 105. [doi: 10.1145/3453154]
                  [7]   Wang HW, Zhao M, Xie X, Li WJ, Guo MY. Knowledge graph convolutional networks for recommender systems. In: Proc. of the 2019
                      World Wide Web Conf. San Francisco: ACM, 2019. 3307–3313. [doi: 10.1145/3308558.3313417]
                  [8]   Li LS, Dong JY, Qin XY. Dual-view graph neural network with gating mechanism for entity alignment. Applied Intelligence, 2023,
                      53(15): 18189–18204. [doi: 10.1007/s10489-022-04393-4]
                  [9]   Ji SX, Pan SR, Cambria E, Marttinen P, Yu PS. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE
                      Trans. on Neural Networks and Learning Systems, 2022, 33(2): 494–514. [doi: 10.1109/TNNLS.2021.3070843]
                 [10]   Zhang  X,  Zhang  CX,  Guo  JT,  Peng  C,  Niu  ZD,  Wu  XD.  Graph  attention  network  with  dynamic  representation  of  relations  for
                      knowledge graph completion. Expert Systems with Applications, 2023, 219: 119616. [doi: 10.1016/j.eswa.2023.119616]
                 [11]   Li  WD,  Peng  R,  Li  Z.  Knowledge  graph  completion  by  jointly  learning  structural  features  and  soft  logical  rules.  IEEE  Trans.  on
                      Knowledge and Data Engineering, 2023, 35(3): 2724–2735. [doi: 10.1109/TKDE.2021.3108224]
                 [12]   Zhang  NY,  Xie  X,  Chen  X,  Deng  SM,  Ye  HB,  Chen  HJ.  Knowledge  collaborative  fine-tuning  for  low-resource  knowledge  graph
                      completion. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3531–3545 (in Chinese with English abstract). http://www.jos.org.cn/
                      1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
                 [13]   Wang  Q,  Wang  B,  Guo  L.  Knowledge  base  completion  using  embeddings  and  rules.  In:  Proc.  of  the  24th  Int’l  Conf.  on  Artificial
                      Intelligence. Buenos Aires: AAAI Press, 2015. 1859–1865.
                 [14]   Wang Q, Mao ZD, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. on Knowledge
                      and Data Engineering, 2017, 29(12): 2724–2743. [doi: 10.1109/TKDE.2017.2754499]
                 [15]   Rossi A, Barbosa D, Firmani D, Matinata A, Merialdo P. Knowledge graph embedding for link prediction: A comparative analysis.
                      ACM Trans. on Knowledge Discovery from Data (TKDD), 2021, 15(2): 14. [doi: 10.1145/3424672]
                 [16]   Shen  T,  Zhang  F,  Cheng  JW.  A  comprehensive  overview  of  knowledge  graph  completion.  Knowledge-based  Systems,  2022,  255:
                      109597. [doi: 10.1016/j.knosys.2022.109597]
   235   236   237   238   239   240   241   242   243   244   245