Page 246 - 《软件学报》2025年第12期
P. 246

郑修林 等: 知识图谱补全技术及应用                                                              5627


                 [125]   Zhang YC, Chen Z, Guo LB, Xu YJ, Hu BB, Liu ZQ, Chen HJ, Zhang W. MyGO: Discrete modality information as fine-grained tokens
                      for multi-modal knowledge graph completion. arXiv:2404.09468, 2024.
                 [126]   Zhang YC, Chen Z, Guo LB, Xu YJ, Hu BB, Liu ZQ, Zhang W, Chen HJ. Multiple heads are better than one: Mixture of modality
                      knowledge  experts  for  entity  representation  learning.  In:  Proc.  of  the  13th  Int’l  Conf.  on  Learning  Representations.  Singapor:
                      OpenReview.net, 2025. 172–188.
                 [127]   Chen Q, Zhang D, Li SS, Zhou GD. Task knowledge fusion for multimodal knowledge graph completion. Ruan Jian Xue Bao/Journal of
                      Software, 2025, 36(4): 1590–1603 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/7213.htm [doi: 10.13328/j.cnki.
                      jos.007213]
                 [128]   Li ZJ, Shen LW, Li G, Peng X. Text-oriented construction for CPS resource capability knowledge graph. Ruan Jian Xue Bao/Journal of
                      Software, 2023, 34(5): 2268–2285 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6410.htm [doi: 10.13328/j.cnki.
                      jos.006410]
                 [129]   Zhang ZQ, Cai JY, Zhang YD, Wang J. Learning hierarchy-aware knowledge graph embeddings for link prediction. In: Proc. of the 34th
                      AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 3065–3072. [doi: 10.1609/aaai.v34i03.5701]
                 [130]   Li RR, Wu X, Wu X, Wang W. Few-shot learning for new user recommendation in location-based social networks. In: Proc. of the 2020
                      Web Conf. 2020. Taipei: ACM, 2020. 2472–2478. [doi: 10.1145/3366423.3379994]
                 [131]   Wu XD, Li J, Zhou P, Bu CY. Fusion technique for fragmented genealogy data. Ruan Jian Xue Bao/Journal of Software, 2021, 32(9):
                      2816–2836 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6010.htm [doi: 10.13328/j.cnki.jos.006010]
                 [132]   Wu XD, Sheng SJ, Jiang TT, Bu CY, Wu MH. Huapu-CP: From knowledge graphs to a data central-platform. Acta Automatica Sinica,
                      2020, 46(10): 2045–2059 (in Chinese with English abstract). [doi: 10.16383/j.aas.c200502]
                 [133]   Wu XD, He J, Lu RL, Zheng NN. From big data to big knowledge: HACE+BigKE. Acta Automatica Sinica, 2016, 42(7): 965–982 (in
                      Chinese with English abstract). [doi: 10.16383/j.aas.2016.c160239]
                 [134]   Dong BB, Zhang Z, Li J, Zhu Y, Bu CY, Wu XD. Hypernode: Entity fusion for data traceability and link prediction. In: Proc. of the
                      2022 IEEE Int’l Conf. on Data Mining. Orlando: IEEE, 2022. 111–120. [doi: 10.1109/ICDM54844.2022.00021]

                 附中文参考文献:
                  [4]   毕鑫, 聂豪杰, 赵相国, 袁野, 王国仁. 面向知识图谱约束问答的强化学习推理技术. 软件学报, 2023, 34(10): 4565–4583. http://www.
                      jos.org.cn/1000-9825/6889.htm [doi: 10.13328/j.cnki.jos.006889]
                  [5]   乔少杰, 杨国平, 于泳, 韩楠, 覃晓, 屈露露, 冉黎琼, 李贺. QA-KGNet: 一种语言模型驱动的知识图谱问答模型. 软件学报, 2023,
                      34(10): 4584–4600. http://www.jos.org.cn/1000-9825/6882.htm [doi: 10.13328/j.cnki.jos.006882]
                 [12]   张宁豫, 谢辛, 陈想, 邓淑敏, 叶宏彬, 陈华钧. 基于知识协同微调的低资源知识图谱补全方法. 软件学报, 2022, 33(10): 3531–3545.
                      http://www.jos.org.cn/1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
                 [17]   杜雪盈, 刘名威, 沈立炜, 彭鑫. 面向链接预测的知识图谱表示学习方法综述. 软件学报, 2024, 35(1): 87–117. http://www.jos.org.cn/
                      1000-9825/6902.htm [doi: 10.13328/j.cnki.jos.006902]
                 [18]   吴国栋, 刘涵伟, 何章伟, 李景霞, 王雪妮. 知识图谱补全技术研究综述. 小型微型计算机系统, 2023, 44(3): 471–482. [doi:
                      10.20009/j.cnki.21-1106/TP.2022-0423]
                 [25]   彭晏飞, 张睿思, 王瑞华, 郭家隆. 少样本知识图谱补全技术研究. 计算机科学与探索, 2023, 17(6): 1268–1284. [doi: 10.3778/j.issn.
                      1673-9418.2209069]
                 [78]   张天成, 田雪, 孙相会, 于明鹤, 孙艳红, 于戈. 知识图谱嵌入技术研究综述. 软件学报, 2023, 34(1): 277–311. http://www.jos.org.cn/
                      1000-9825/6429.htm [doi: 10.13328/j.cnki.jos.006429]
                 [127]   陈强, 张栋, 李寿山, 周国栋. 融合任务知识的多模态知识图谱补全. 软件学报, 2025, 36(4): 1590–1603. http://www.jos.org.cn/1000-
                      9825/7213.htm [doi: 10.13328/j.cnki.jos.007213]
                 [128]   李正洁, 沈立炜, 李弋, 彭鑫. 面向文本描述的  CPS  资源能力知识图谱构建. 软件学报, 2023, 34(5): 2268–2285. http://www.jos.org.
                      cn/1000-9825/6410.htm [doi: 10.13328/j.cnki.jos.006410]
                 [131]   吴信东, 李娇, 周鹏, 卜晨阳. 碎片化家谱数据的融合技术. 软件学报, 2021, 32(9): 2816–2836. http://www.jos.org.cn/1000-9825/6010.
                      htm [doi: 10.13328/j.cnki.jos.006010]
                 [132]   吴信东, 盛绍静, 蒋婷婷, 卜晨阳, 吴明辉. 从知识图谱到数据中台: 华谱系统. 自动化学报, 2020, 46(10): 2045–2059. [doi:
                      10.16383/j.aas.c200502]
                 [133]   吴信东, 何进, 陆汝钤, 郑南宁. 从大数据到大知识: HACE+BigKE. 自动化学报, 2016, 42(7): 965–982. [doi: 10.16383/j.aas.2016.
                      c160239]
   241   242   243   244   245   246   247   248   249   250   251