Page 240 - 《软件学报》2025年第9期
P. 240

郝志峰 等: 基于增强条件独立性检验的鲁棒因果发现算法                                                     4151


                 [14]   Belthangady  C,  Giampanis  S,  Jankovic  I,  Stedden  W,  Alves  P,  Chong  S,  Knott  C,  Norgeot  B.  Causal  deep  learning  reveals  the
                     comparative effectiveness of antihyperglycemic treatments in poorly controlled diabetes. Nature Communications, 2022, 13(1): 6921.
                     [doi: 10.1038/s41467-022-33732-9]
                 [15]   Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y. Toward causal representation learning. Proc. of the
                     IEEE, 2021, 109(5): 612–634. [doi: 10.1109/JPROC.2021.3058954]
                 [16]   Chai  BF,  Jia  CY,  Yu  J.  Approaches  of  structure  exploratory  based  on  probabilistic  models  in  massive  networks.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2014, 25(12): 2753–2766 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4722.htm [doi:
                     10.13328/j.cnki.jos.004722]
                 [17]   Chen WQ, Hao ZF, Cai RC, Zhang XZ, Hu Y, Liu M. Multiple-cause discovery combined with structure learning for high-dimensional
                     discrete data and application to stock prediction. Soft Computing, 2016, 20(11): 4575–4588. [doi: 10.1007/s00500-015-1764-8]
                 [18]   Zhang  XZ,  Hu  Y,  Xie  K,  Wang  SY,  Ngai  EWT,  Liu  M.  A  causal  feature  selection  algorithm  for  stock  prediction  modeling.
                     Neurocomputing, 2014, 142: 48–59. [doi: 10.1016/j.neucom.2014.01.057]
                 [19]   Li YZ, Torralba A, Anandkumar A, Fox D, Garg A. Causal discovery in physical systems from videos. In: Proc. of the 34th Conf. on
                     Neural Information Processing Systems. Vancouver: NeurIPS, 2020. 9180–9192.
                 [20]   Spirtes P, Glymour CN, Scheines R. Causation, Prediction, and Search. 2nd ed., Cambridge: MIT Press, 2000.
                 [21]   Meek C. Causal inference and causal explanation with background knowledge. In: Proc. of the 11th Conf. on Uncertainty in Artificial
                     Intelligence. Montréal: Morgan Kaufmann Publishers Inc., 1995. 403–410.
                 [22]   Dor  D,  Tarsi  M.  A  simple  algorithm  to  construct  a  consistent  extension  of  a  partially  oriented  graph.  Technical  Report,  R-185,  Los
                     Angeles: Cognitive Systems Laboratory, 1992. 45.
                 [23]   Margaritis D, Thrun S. Bayesian network induction via local neighborhoods. In: Proc. of the 12th Int’l Conf. on Neural Information
                     Processing Systems. Denver: MIT Press, 1999. 505–511.
                 [24]   Bromberg  F,  Margaritis  D.  Improving  the  reliability  of  causal  discovery  from  small  data  sets  using  argumentation.  The  Journal  of
                     Machine Learning Research, 2009, 10: 301–340.
                 [25]   Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal and Markov blanket induction for causal discovery and
                     feature selection for classification Part I: Algorithms and empirical evaluation. The Journal of Machine Learning Research, 2010, 11:
                     171–234.
                 [26]   Armen  AP,  Tsamardinos  I.  Estimation  and  control  of  the  false  discovery  rate  of  Bayesian  network  skeleton  identification.  Technical
                     Report, TR-441, Crete: University of Crete, 2014.
                 [27]   Hyttinen A, Eberhardt F, Järvisalo M. Constraint-based causal discovery: Conflict resolution with answer set programming. In: Proc. of
                     the 30th Conf. on Uncertainty in Artificial Intelligence. Quebec: UAI Press, 2014. 340–349.
                 [28]   Gao  T,  Fadnis  K,  Campbell  M.  Local-to-global  Bayesian  network  structure  learning.  In:  Proc.  of  the  34th  Int’l  Conf.  on  Machine
                     Learning. Sydney: JMLR.org, 2017. 1193–1202.
                 [29]   Kalisch M, Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. The Journal of Machine Learning
                     Research, 2007, 8: 613–636.
                 [30]   Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning,
                     2006, 65(1): 31–78. [doi: 10.1007/s10994-006-6889-7]
                 [31]   Zhalama, Zhang JJ, Eberhardt F, Mayer W, Li MJ. ASP-based discovery of semi-Markovian causal models under weaker assumptions.
                     In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: ijcai.org, 2019. 1488–1494. [doi: 10.24963/ijcai.2019/206]
                 [32]   Niinimäki  T,  Parviainen  P.  Local  structure  discovery  in  Bayesian  networks.  In:  Proc.  of  the  28th  Conf.  on  Uncertainty  in  Artificial
                     Intelligence. Catalina: AUAI Press, 2012. 634–643.
                 [33]   Pearl J. Causality: Models, Reasoning and Inference. New York: Cambridge University Press, 2009.
                 [34]   Murphy  K,  Schölkopf  B,  Colombo  D,  Maathuis  MH.  Order-independent  constraint-based  causal  structure  learning.  The  Journal  of
                     Machine Learning Research, 2014, 15(1): 3741–3782.
                 [35]   Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann Publishers, 1988.
                 [36]   Chickering DM. Optimal structure identification with greedy search. The Journal of Machine Learning Research, 2003, 3: 507–554. [doi:
                     10.1162/153244303321897717]
                 [37]   Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A. A linear non-Gaussian acyclic model for causal discovery. The Journal of Machine
                     Learning Research, 2006, 7: 2003–2030
                 [38]   Cai RC, Qiao J, Zhang K, Zhang ZJ, Hao ZF. Causal discovery with cascade nonlinear additive noise models. In: Proc. of the 28th Int’l
                     Joint Conf. on Artificial Intelligence. Macao: AAAI Press, 2019. 1609–1615.
                 [39]   Chai RC, Chen W, Zhang K, Hao ZF. A survey on non-temporal series observational data based causal discovery. Chinese Journal of
   235   236   237   238   239   240   241   242   243   244   245