Page 240 - 《软件学报》2025年第9期
P. 240
郝志峰 等: 基于增强条件独立性检验的鲁棒因果发现算法 4151
[14] Belthangady C, Giampanis S, Jankovic I, Stedden W, Alves P, Chong S, Knott C, Norgeot B. Causal deep learning reveals the
comparative effectiveness of antihyperglycemic treatments in poorly controlled diabetes. Nature Communications, 2022, 13(1): 6921.
[doi: 10.1038/s41467-022-33732-9]
[15] Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y. Toward causal representation learning. Proc. of the
IEEE, 2021, 109(5): 612–634. [doi: 10.1109/JPROC.2021.3058954]
[16] Chai BF, Jia CY, Yu J. Approaches of structure exploratory based on probabilistic models in massive networks. Ruan Jian Xue
Bao/Journal of Software, 2014, 25(12): 2753–2766 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4722.htm [doi:
10.13328/j.cnki.jos.004722]
[17] Chen WQ, Hao ZF, Cai RC, Zhang XZ, Hu Y, Liu M. Multiple-cause discovery combined with structure learning for high-dimensional
discrete data and application to stock prediction. Soft Computing, 2016, 20(11): 4575–4588. [doi: 10.1007/s00500-015-1764-8]
[18] Zhang XZ, Hu Y, Xie K, Wang SY, Ngai EWT, Liu M. A causal feature selection algorithm for stock prediction modeling.
Neurocomputing, 2014, 142: 48–59. [doi: 10.1016/j.neucom.2014.01.057]
[19] Li YZ, Torralba A, Anandkumar A, Fox D, Garg A. Causal discovery in physical systems from videos. In: Proc. of the 34th Conf. on
Neural Information Processing Systems. Vancouver: NeurIPS, 2020. 9180–9192.
[20] Spirtes P, Glymour CN, Scheines R. Causation, Prediction, and Search. 2nd ed., Cambridge: MIT Press, 2000.
[21] Meek C. Causal inference and causal explanation with background knowledge. In: Proc. of the 11th Conf. on Uncertainty in Artificial
Intelligence. Montréal: Morgan Kaufmann Publishers Inc., 1995. 403–410.
[22] Dor D, Tarsi M. A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report, R-185, Los
Angeles: Cognitive Systems Laboratory, 1992. 45.
[23] Margaritis D, Thrun S. Bayesian network induction via local neighborhoods. In: Proc. of the 12th Int’l Conf. on Neural Information
Processing Systems. Denver: MIT Press, 1999. 505–511.
[24] Bromberg F, Margaritis D. Improving the reliability of causal discovery from small data sets using argumentation. The Journal of
Machine Learning Research, 2009, 10: 301–340.
[25] Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal and Markov blanket induction for causal discovery and
feature selection for classification Part I: Algorithms and empirical evaluation. The Journal of Machine Learning Research, 2010, 11:
171–234.
[26] Armen AP, Tsamardinos I. Estimation and control of the false discovery rate of Bayesian network skeleton identification. Technical
Report, TR-441, Crete: University of Crete, 2014.
[27] Hyttinen A, Eberhardt F, Järvisalo M. Constraint-based causal discovery: Conflict resolution with answer set programming. In: Proc. of
the 30th Conf. on Uncertainty in Artificial Intelligence. Quebec: UAI Press, 2014. 340–349.
[28] Gao T, Fadnis K, Campbell M. Local-to-global Bayesian network structure learning. In: Proc. of the 34th Int’l Conf. on Machine
Learning. Sydney: JMLR.org, 2017. 1193–1202.
[29] Kalisch M, Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. The Journal of Machine Learning
Research, 2007, 8: 613–636.
[30] Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning,
2006, 65(1): 31–78. [doi: 10.1007/s10994-006-6889-7]
[31] Zhalama, Zhang JJ, Eberhardt F, Mayer W, Li MJ. ASP-based discovery of semi-Markovian causal models under weaker assumptions.
In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: ijcai.org, 2019. 1488–1494. [doi: 10.24963/ijcai.2019/206]
[32] Niinimäki T, Parviainen P. Local structure discovery in Bayesian networks. In: Proc. of the 28th Conf. on Uncertainty in Artificial
Intelligence. Catalina: AUAI Press, 2012. 634–643.
[33] Pearl J. Causality: Models, Reasoning and Inference. New York: Cambridge University Press, 2009.
[34] Murphy K, Schölkopf B, Colombo D, Maathuis MH. Order-independent constraint-based causal structure learning. The Journal of
Machine Learning Research, 2014, 15(1): 3741–3782.
[35] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann Publishers, 1988.
[36] Chickering DM. Optimal structure identification with greedy search. The Journal of Machine Learning Research, 2003, 3: 507–554. [doi:
10.1162/153244303321897717]
[37] Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A. A linear non-Gaussian acyclic model for causal discovery. The Journal of Machine
Learning Research, 2006, 7: 2003–2030
[38] Cai RC, Qiao J, Zhang K, Zhang ZJ, Hao ZF. Causal discovery with cascade nonlinear additive noise models. In: Proc. of the 28th Int’l
Joint Conf. on Artificial Intelligence. Macao: AAAI Press, 2019. 1609–1615.
[39] Chai RC, Chen W, Zhang K, Hao ZF. A survey on non-temporal series observational data based causal discovery. Chinese Journal of

