Page 241 - 《软件学报》2025年第9期
P. 241
4152 软件学报 2025 年第 36 卷第 9 期
Computers, 2017, 40(6): 1470–1490 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.01470]
[40] Hoyer PO, Janzing D, Mooij J, Peters J, Schölkopf B. Nonlinear causal discovery with additive noise models. In: Proc. of the 21st Int’l
Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2008. 689–696.
[41] Triantafillou S, Tsamardinos I. Constraint-based causal discovery from multiple interventions over overlapping variable sets. The Journal
of Machine Learning Research, 2015, 16(1): 2147–2205.
[42] Ng I, Zheng YJ, Zhang JJ, Zhang K. Reliable causal discovery with improved exact search and weaker assumptions. In: Proc. of the 35th
Int’l Conf. on Neural Information Processing System. Curran Associates Inc., 2021. 1553.
[43] Guo XJ, Yu K, Liu L, Li PP, Li JY. Adaptive skeleton construction for accurate DAG learning. IEEE Trans. on Knowledge and Data
Engineering, 2023, 35(10): 10526–10539. [doi: 10.1109/TKDE.2023.3265015]
[44] Pearson K. III. Contributions to the mathematical theory of evolution. Philosophical Trans. of the Royal Society A, 1894, 185: 71–110.
[doi: 10.1098/rsta.1894.0003]
[45] Bartlett MS. The statistical significance of canonical correlations. Biometrika, 1941, 32(1): 29–37. [doi: 10.2307/2332247]
[46] Zheng YJ, Huang BW, Chen W, Ramsey J, Gong MM, Cai RC, Shimizu S, Spirtes P, Zhang K. Causal-learn: Causal discovery in Python.
Journal of Machine Learning Research, 2024, 25(60): 1–8.
[47] Scutari M, Howell P, Balding DJ, Mackay I. Multiple quantitative trait analysis using bayesian networks. Genetics, 2014, 198(1):
129–137. [doi: 10.1534/genetics.114.165704]
[48] Downs JJ, Vogel EF. A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17(3): 245–255. [doi:
10.1016/0098-1354(93)80018-I]
[49] Menegozzo G, Dall’Alba D, Fiorini P. CIPCaD-Bench: Continuous industrial process datasets for benchmarking causal discovery
methods. In: Proc. of the 18th IEEE Int’l Conf. on Automation Science and Engineering. Mexico City: IEEE, 2022. 2124–2131. [doi: 10.
1109/CASE49997.2022.9926420]
附中文参考文献:
[12] 赵森栋, 刘挺. 因果关系及其在社会媒体上的应用研究综述. 软件学报, 2014, 25(12): 2733–2752. http://www.jos.org.cn/1000-9825/
4724.htm [doi: 10.13328/j.cnki.jos.004724]
[16] 柴变芳, 贾彩燕, 于剑. 基于概率模型的大规模网络结构发现方法. 软件学报, 2014, 25(12): 2753–2766. http://www.jos.org.cn/1000-
9825/4722.htm [doi: 10.13328/j.cnki.jos.004722]
[39] 蔡瑞初, 陈薇, 张坤, 郝志峰. 基于非时序观察数据的因果关系发现综述. 计算机学报, 2017, 40(6): 1470–1490 [doi: 10.11897/
SP.J.1016.2017.01470]
郝志峰(1968-), 男, 博士, 教授, 博士生导师, 乔杰(1993-), 男, 博士, 主要研究领域为因果推
CCF 专业会员, 主要研究领域为算法设计与分 断, 人工智能.
析, 数学建模, 数据挖掘.
汪菲霞(1999-), 女, 硕士生, 主要研究领域为因 蔡瑞初(1983-), 男, 博士, 教授, 博士生导师,
果关系发现. CCF 高级会员, 主要研究领域为因果推断, 深度
学习.
陈正鸣(1996-), 男, 博士生, 主要研究领域为因
果发现, 潜在因果模型及其应用.

