Page 241 - 《软件学报》2025年第9期
P. 241

4152                                                       软件学报  2025  年第  36  卷第  9  期


                     Computers, 2017, 40(6): 1470–1490 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.01470]
                 [40]   Hoyer PO, Janzing D, Mooij J, Peters J, Schölkopf B. Nonlinear causal discovery with additive noise models. In: Proc. of the 21st Int’l
                     Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2008. 689–696.
                 [41]   Triantafillou S, Tsamardinos I. Constraint-based causal discovery from multiple interventions over overlapping variable sets. The Journal
                     of Machine Learning Research, 2015, 16(1): 2147–2205.
                 [42]   Ng I, Zheng YJ, Zhang JJ, Zhang K. Reliable causal discovery with improved exact search and weaker assumptions. In: Proc. of the 35th
                     Int’l Conf. on Neural Information Processing System. Curran Associates Inc., 2021. 1553.
                 [43]   Guo XJ, Yu K, Liu L, Li PP, Li JY. Adaptive skeleton construction for accurate DAG learning. IEEE Trans. on Knowledge and Data
                     Engineering, 2023, 35(10): 10526–10539. [doi: 10.1109/TKDE.2023.3265015]
                 [44]   Pearson K. III. Contributions to the mathematical theory of evolution. Philosophical Trans. of the Royal Society A, 1894, 185: 71–110.
                     [doi: 10.1098/rsta.1894.0003]
                 [45]   Bartlett MS. The statistical significance of canonical correlations. Biometrika, 1941, 32(1): 29–37. [doi: 10.2307/2332247]
                 [46]   Zheng YJ, Huang BW, Chen W, Ramsey J, Gong MM, Cai RC, Shimizu S, Spirtes P, Zhang K. Causal-learn: Causal discovery in Python.
                     Journal of Machine Learning Research, 2024, 25(60): 1–8.
                 [47]   Scutari  M,  Howell  P,  Balding  DJ,  Mackay  I.  Multiple  quantitative  trait  analysis  using  bayesian  networks.  Genetics,  2014,  198(1):
                     129–137. [doi: 10.1534/genetics.114.165704]
                 [48]   Downs JJ, Vogel EF. A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17(3): 245–255. [doi:
                     10.1016/0098-1354(93)80018-I]
                 [49]   Menegozzo  G,  Dall’Alba  D,  Fiorini  P.  CIPCaD-Bench:  Continuous  industrial  process  datasets  for  benchmarking  causal  discovery
                     methods. In: Proc. of the 18th IEEE Int’l Conf. on Automation Science and Engineering. Mexico City: IEEE, 2022. 2124–2131. [doi: 10.
                     1109/CASE49997.2022.9926420]

                 附中文参考文献:
                 [12]   赵森栋, 刘挺. 因果关系及其在社会媒体上的应用研究综述. 软件学报, 2014, 25(12): 2733–2752. http://www.jos.org.cn/1000-9825/
                     4724.htm [doi: 10.13328/j.cnki.jos.004724]
                 [16]   柴变芳, 贾彩燕, 于剑. 基于概率模型的大规模网络结构发现方法. 软件学报, 2014, 25(12): 2753–2766. http://www.jos.org.cn/1000-
                     9825/4722.htm [doi: 10.13328/j.cnki.jos.004722]
                 [39]   蔡瑞初, 陈薇, 张坤, 郝志峰. 基于非时序观察数据的因果关系发现综述. 计算机学报, 2017, 40(6): 1470–1490 [doi: 10.11897/
                     SP.J.1016.2017.01470]


                             郝志峰(1968-), 男, 博士, 教授, 博士生导师,                乔杰(1993-), 男, 博士, 主要研究领域为因果推
                            CCF  专业会员, 主要研究领域为算法设计与分                     断, 人工智能.
                            析, 数学建模, 数据挖掘.



                             汪菲霞(1999-), 女, 硕士生, 主要研究领域为因                 蔡瑞初(1983-), 男, 博士, 教授, 博士生导师,
                            果关系发现.                                       CCF  高级会员, 主要研究领域为因果推断, 深度
                                                                         学习.



                             陈正鸣(1996-), 男, 博士生, 主要研究领域为因
                            果发现, 潜在因果模型及其应用.
   236   237   238   239   240   241   242   243   244   245   246