Page 142 - 《软件学报》2025年第9期
P. 142

谢生龙 等: 基于多模态融合的软件缺陷协同分派方法                                                       4053


                     2023, 200: 111667. [doi: 10.1016/j.jss.2023.111667]
                 [15]   Liu Y, Yang SS, Lei CY, Wang GX, Tang HH, Zhang JY, Sun AX, Miao CY. Pre-training graph Transformer with multimodal side
                     information for recommendation. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. ACM, 2021. 2853–2861. [doi: 10.1145/3474085.
                     3475709]
                 [16]   Mani S, Sankaran A, Aralikatte R. DeepTriage: Exploring the effectiveness of deep learning for bug triaging. In: Proc. of the 2019 ACM
                     India Joint Int’l Conf. on Data Science and Management of Data. Kolkata: ACM, 2019. 171–179. [doi: 10.1145/3297001.3297023]
                 [17]   Čubranić D, Murphy GC. Automatic bug triage using text categorization. In: Proc. of the 16th Int’l Conf. on Software Engineering &
                     Knowledge Engineering. Banff, 2004. 92–97.
                 [18]   Nagwani NK, Suri JS. An artificial intelligence framework on software bug triaging, technological evolution, and future challenges: A
                     review. Int’l Journal of Information Management Data Insights, 2023, 3(1): 100153. [doi: 10.1016/j.jjimei.2022.100153]
                 [19]   Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN
                     encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014.
                 [20]   Zaidi SFA, Woo H, Lee CG. A graph convolution network-based bug triage system to learn heterogeneous graph representation of bug
                     reports. IEEE Access, 2022, 10: 20677–20689. [doi: 10.1109/ACCESS.2022.3153075]
                 [21]   Al-Batlaa A, Abdullah-Al-Wadud M, Hossain MA. A review on recommending solutions for bugs using crowdsourcing. In: Proc. of the
                     21st Saudi Computer Society National Computer Conf. (NCC). Riyadh: IEEE, 2018. 1–4. [doi: 10.1109/NCG.2018.8593018]
                 [22]   Wu HR, Ma YT, Xiang ZL, Yang C, He KQ. A spatial-temporal graph neural network framework for automated software bug triaging.
                     Knowledge-based Systems, 2022, 241: 108308. [doi: 10.1016/j.knosys.2022.108308]
                 [23]   Zaidi SFA, Woo H, Lee CG. Toward an effective bug triage system using transformers to add new developers. Journal of Sensors, 2022,
                     2022: 4347004. [doi: 10.1155/2022/4347004]
                 [24]   Yang G, Zhang T, Lee B. Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of bug
                     reports. In: Proc. of the 38th IEEE Annual Computer Software and Applications Conf. Vasteras: IEEE, 2014. 97–106. [doi: 10.1109/
                     COMPSAC.2014.16]
                 [25]   Li Z, Shen X, Jiao YH, Pan XM, Zou PC, Meng XL, Yao CW, Bu JJ. Hierarchical bipartite graph neural networks: Towards large-scale e-
                     commerce applications. In: Proc. of the 36th IEEE Int’l Conf. on Data Engineering (ICDE). Dallas: IEEE, 2020. 1677–1688. [doi: 10.
                     1109/ICDE48307.2020.00149]
                 [26]   Ren YX, Zhu H, Zhang JW, Dai P, Bo LF. EnsemFDet: An ensemble approach to fraud detection based on bipartite graph. In: Proc. of
                     the 37th IEEE Int’l Conf. on Data Engineering (ICDE). Chania: IEEE, 2021. 2039–2044. [doi: 10.1109/ICDE51399.2021.00197]
                 [27]   Al-Eidi S, Chen YZ, Darwishand O, Alfosool AMS. Time-ordered bipartite graph for spatio-temporal social network analysis. In: Proc. of
                     the  2020  Int’l  Conf.  on  Computing,  Networking  and  Communications  (ICNC).  Big  Island:  IEEE,  2020.  833–838.  [doi:  10.1109/
                     ICNC47757.2020.9049668]
                 [28]   Hafsi A, Gamha Y, Ben Njima C, Ben Romdhane L. BIG-SWSDM: BIpartite graph based social Web service discovery model. In: Proc.
                     of the 23rd Int’l Conf. on Business Information Systems. Colorado Springs: Springer, 2020. 307–318. [doi: 10.1007/978-3-030-53337-
                     3_23]
                 [29]   He  XN,  Deng  K,  Wang  X,  Li  Y,  Zhang  YD,  Wang  M.  LightGCN:  Simplifying  and  powering  graph  convolution  network  for
                     recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020.
                     639–648. [doi: 10.1145/3397271.3401063]
                 [30]   He XN, Liao LZ, Zhang HW, Nie LQ, Hu X, Chua TS. Neural collaborative filtering. In: Proc. of the 26th Int’l Conf. on World Wide
                     Web. Perth: Int’l World Wide Web Conf. Steering Committee, 2017. 173–182. [doi: 10.1145/3038912.3052569]
                 [31]   Park JW, Lee MW, Kim J, Hwang SW, Kim S. CosTriage: A cost-aware triage algorithm for bug reporting systems. In: Proc. of the 25th
                     AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2011. 139–144. [doi: 10.1609/aaai.v25i1.7839]
                 [32]   Chen JY, Zhang HW, He XN, Nie LQ, Liu W, Chua TS. Attentive collaborative filtering: Multimedia recommendation with item- and
                     component-level  attention.  In:  Proc.  of  the  40th  Int’l  ACM  SIGIR  Conf.  on  Research  and  Development  in  Information  Retrieval.
                     Shinjuku: ACM, 2017. 335–344. [doi: 10.1145/3077136.3080797]
                 [33]   Wang H, Wang NY, Yeung DY. Collaborative deep learning for recommender systems. In: Proc. of the 21st ACM SIGKDD Int’l Conf.
                     on Knowledge Discovery and Data Mining. Sydney: ACM, 2015. 1235–1244. [doi: 10.1145/2783258.2783273]
                 [34]   Wang X, He XN, Nie LQ, Chua TS. Item Silk Road: Recommending items from information domains to social users. In: Proc. of the 40th
                     Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Shinjuku: ACM, 2017. 185–194. [doi: 10.1145/3077136.
                     3080771]
                 [35]   Xin X, He XN, Zhang YF, Zhang YD, Jose J. Relational collaborative filtering: Modeling multiple item relations for recommendation. In:
   137   138   139   140   141   142   143   144   145   146   147