Page 141 - 《软件学报》2025年第9期
P. 141

4052                                                       软件学报  2025  年第  36  卷第  9  期


                 同时, 设计了一种     GCF  方法, 通过融合   bug  报告文本语义和     bug-开发者二部图两个模态数据重构节点特征, 并基
                 于二部图结构捕获       bug-开发者之间的相关性. 最终, 将       bug  分派任务建模为     GCF  模块上的链接预测, 并根据预测
                 结果得到了    bug  分派的推荐方案. 在     GC、MC   及  MF  这  3  个公开数据集上进行的大量实验分析表明, CBT-MF
                 对  bug  分派的性能较好, 整体表现出了明显的优越性. 该方法有望为软件                 bug  分派开辟新的研究思路, 提高       bug  分
                 派的准确性和效率.
                    CBT-MF  还有许多值得扩展的工作. 首先, 需要继续深入探究               bug-开发者相关性的有效表征, 并研究应用其他
                 聚合器, 如最大池化、LSTM       等, 以提升   CBT-MF  方法的性能. 其次, 进一步研究自适应的数据增强方案, 通过基于
                 自适应的数据增强方案对不均衡            bug  数据进行优化和调整, 以更好地适应不同分布和特征的数据. 第三, 不断探
                 索  CBT-MF  在其他软件   bug  分派场景应用的可行性, 以提高        CBT-MF  方法的表达能力和泛化性. 最后, 计划探索
                 处理重复报告和动态属性变化等问题的有效方法, 以提升                  CBT-MF  的推广性和实用性. 此外, 在       CBT-MF  中, 主要
                 强调  bug  和开发者文本表示向量和二部图数据的融合及特征提取, 因此在                   bug  分派时选取了简单的内积交互函数
                 进行相关性预测. 事实上, 还有其他更复杂的选择, 例如基于神经网络的交互函数, 其不仅可以通过向量传播层来
                 丰富初始向量, 而且还允许通过参数调整来控制向量传播的范围. 因此, 探索更有效的分派预测方法也是未来研究
                 工作的一部分.

                 References:
                  [1]   Zhang TL, Chen R, Yang X, Zhu HY. Approach of bug reports classification based on cost extreme learning machine. Ruan Jian Xue
                     Bao/Journal of Software, 2019, 30(5): 1386–1406 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5725.htm [doi: 10.
                     13328/j.cnki.jos.005725]
                  [2]   Sun JM, Xing ZC, Xia X, Lu QH, Xu XW, Zhu LM. Aspect-level information discrepancies across heterogeneous vulnerability reports:
                     Severity, types and detection methods. ACM Trans. on Software Engineering and Methodology, 2023, 33(2): 49. [doi: 10.1145/3624734]
                  [3]   Banerjee S, Syed Z, Helmick J, Culp M, Ryan K, Cukic B. Automated triaging of very large bug repositories. Information and Software
                     Technology, 2017, 89: 1–13. [doi: 10.1016/j.infsof.2016.09.006]
                  [4]   Binh  NT,  Tinh  PD,  Chien  NH.  BKiosk  system—A  solution  for  context-specific  services  supporting  contextualization  stage  of  E-
                     government systems. In: Proc. of the 6th Int’l Conf. on E-commerce, E-business and E-government. Plymouth: ACM, 2022. 403–411.
                     [doi: 10.1145/3537693.3537716]
                  [5]   Anvik J, Hiew L, Murphy GC. Who should fix this bug? In: Proc. of the 28th Int’l Conf. on Software Engineering. Shanghai: ACM, 2006.
                     361–370. [doi: 10.1145/1134285.1134336]
                  [6]   Sharma M, Tandon A, Kumari M, Singh VB. Reduction of redundant rules in association rule mining-based bug assignment. Int’l Journal
                     of Reliability, Quality and Safety Engineering, 2017, 24(6): 1740005. [doi: 10.1142/S0218539317400058]
                  [7]   Anvik  J,  Murphy  GC.  Reducing  the  effort  of  bug  report  triage:  Recommenders  for  development-oriented  decisions.  ACM  Trans.  on
                     Software Engineering and Methodology (TOSEM), 2011, 20(3): 10. [doi: 10.1145/2000791.2000794]
                  [8]   Xuan  JF,  Jiang  H,  Ren  ZL,  Zou  WQ.  Developer  prioritization  in  bug  repositories.  In:  Proc.  of  the  34th  Int’l  Conf.  on  Software
                     Engineering (ICSE). Zurich: IEEE, 2012. 25–35. [doi: 10.1109/ICSE.2012.6227209]
                  [9]   Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P. Automated bug assignment: Ensemble-based machine learning in large
                     scale industrial contexts. Empirical Software Engineering, 2016, 21(4): 1533–1578. [doi: 10.1007/s10664-015-9401-9]
                 [10]   He JY, Meng ZP, Chen X, Wang Z, Fan XY. Semi-supervised ensemble learning approach for cross-project defect prediction. Ruan Jian
                     Xue Bao/Journal of Software, 2017, 28(6): 1455–1473 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5228.htm
                     [doi: 10.13328/j.cnki.jos.005228]
                 [11]   Baltrušaitis  T,  Ahuja  C,  Morency  LP.  Multimodal  machine  learning:  A  survey  and  taxonomy.  IEEE  Trans.  on  Pattern  Analysis  and
                     Machine Intelligence, 2019, 41(2): 423–443. [doi: 10.1109/TPAMI.2018.2798607]
                 [12]   Akbari H, Yuan LZ, Qian R, Chuang WH, Chang SF, Cui Y, Gong BQ. VATT: Transformers for multimodal self-supervised learning
                     from raw video, audio and text. In: Proc. of the 35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021.
                     24206–24221.
                 [13]   Anand  V,  Ramesh  R,  Jin  BS,  Wang  ZY,  Lei  XX,  Lin  CY.  Multimodal  language  modelling  on  knowledge  graphs  for  deep  video
                     understanding. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. ACM, 2021. 4868–4872. [doi: 10.1145/3474085.3479220]
                 [14]   Dai J, Li QS, Xue H, Luo Z, Wang YL, Zhan SY. Graph collaborative filtering-based bug triaging. Journal of Systems and Software,
   136   137   138   139   140   141   142   143   144   145   146