Page 143 - 《软件学报》2025年第9期
P. 143

4054                                                       软件学报  2025  年第  36  卷第  9  期


                     Proc. of the 42nd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Paris: ACM, 2019. 125–134. [doi: 10.
                     1145/3331184.3331188]
                 [36]   Cheng ZY, Ding Y, Zhu L, Kankanhalli M. Aspect-aware latent factor model: Rating prediction with ratings and reviews. In: Proc. of the
                     2018 World Wide Web Conf. Lyon: Int’l World Wide Web Conf. Steering Committee, 2018. 639–648. [doi: 10.1145/3178876.3186145]
                 [37]   Wang X, Wang DX, Xu CR, He XN, Cao YX, Chua TS. Explainable reasoning over knowledge graphs for recommendation. In: Proc. of
                     the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 5329–5336. [doi: 10.1609/aaai.v33i01.33015329]
                 [38]   Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR: Bayesian personalized ranking from implicit feedback. In: Proc. of the
                     25th Conf. on Uncertainty in Artificial Intelligence. Montreal: AUAI Press, 2009. 452–461.
                 [39]   Ma H, King I, Lyu MR. Effective missing data prediction for collaborative filtering. In: Proc. of the 30th Annual Int’l ACM SIGIR Conf.
                     on Research and Development in Information Retrieval. Amsterdam: ACM, 2007. 39–46. [doi: 10.1145/1277741.1277751]
                 [40]   Wu JC, Wang X, Feng FL, He XN, Chen L, Lian JX, Xie X. Self-supervised graph learning for recommendation. In: Proc. of the 44th Int’l
                     ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2021. 726–735. [doi: 10.1145/3404835.3462862]
                 [41]   Zhao XY, Xia L, Zou LX, Liu H, Yin DW, Tang JL. UserSim: User simulation via supervised generativeadversarial network. In: Proc. of
                     the 2021 Web Conf. Ljubljana: ACM, 2021. 3582–3589. [doi: 10.1145/3442381.3450125]
                 [42]   Dai J, Li QS, Xie SL, Li DZ, Chu H. PCG: A joint framework of graph collaborative filtering for bug triaging. Journal of Software:
                     Evolution and Process, 2024, 36(9): e2673. [doi: 10.1002/smr.2673]
                 [43]   Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM,
                     1992, 35(12): 61–70. [doi: 10.1145/138859.138867]
                 [44]   Zhu ZY, Li Y, Wang Y, Wang YJ, Tong HH. A deep multimodal model for bug localization. Data Mining and Knowledge Discovery,
                     2021, 35(4): 1369–1392. [doi: 10.1007/s10618-021-00755-7]
                 [45]   Wan Y, Shu JD, Sui YL, Xu GD, Zhao Z, Wu J, Yu P. Multi-modal attention network learning for semantic source code retrieval. In:
                     Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). San Diego: IEEE, 2019. 13–25. [doi: 10.1109/ASE.
                     2019.00012]
                 [46]   Ye X, Shen H, Ma X, Bunescu R, Liu C. From word embeddings to document similarities for improved information retrieval in software
                     engineering. In: Proc. of the 38th Int’l Conf. on Software Engineering. Austin: ACM, 2016. 404–415. [doi: 10.1145/2884781.2884862]
                 [47]   Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013.
                 [48]   Zheng W, Chen JZ, Wu XX, Chen X, Xia X. Empirical studies on deep-learning-based security bug report prediction methods. Ruan Jian
                     Xue Bao/Journal of Software, 2020, 31(5): 1294–1313 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5954.htm
                     [doi: 10.13328/j.cnki.jos.005954]
                 [49]   Guo SK, Zhang XY, Yang X, Chen R, Guo C, Li H, Li TT. Developer activity motivated bug triaging: Via convolutional neural network.
                     Neural Processing Letters, 2020, 51(3): 2589–2606. [doi: 10.1007/s11063-020-10213-y]
                 [50]   Bock  HH.  Clustering  methods:  A  history  of  K-means  algorithms.  In:  Brito  P,  Cucumel  G,  Bertrand  P,  Carvalho  F,  eds.  Selected
                     Contributions in Data Analysis and Classification. Berlin: Springer, 2007. 161–172. [doi: 10.1007/978-3-540-73560-1_15]
                 [51]   Syakur MA, Khotimah BK, Rochman EMS, Satoto BD. Integration K-means clustering method and elbow method for identification of
                     the best customer profile cluster. IOP Conf. Series: Materials Science and Engineering, 2018, 336: 012017. [doi: 10.1088/1757-899X/336/
                     1/012017]
                 [52]   Dai J. Research on self-supervised learning for collaborative triaging of software bugs [Ph.D. Thesis]. Xi’an: Xidian University, 2023 (in
                     Chinese with English abstract). [doi: 10.27389/d.cnki.gxadu.2023.000028]
                 [53]   Ma QL, Zheng ZJ, Zheng JW, Li S, Zhuang WQ, Cottrell GW. Joint-label learning by dual augmentation for time series classification. In:
                     Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 8847–8855. [doi: 10.1609/aaai.v35i10.17071]
                 [54]   Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2017.
                 [55]   Google. Issues—Chromium. 2023. https://bugs.chromium.org/p/chromium/issues/list
                 [56]   Mozilla. Components for core. 2023. https://bugzilla.mozilla.org/describecomponents.cgi?product=Core
                 [57]   Mozilla. Components for Firefox. 2023. https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox

                 附中文参考文献:
                  [1]   张天伦, 陈荣, 杨溪, 祝宏玉. 基于代价极速学习机的软件缺陷报告分类方法. 软件学报, 2019, 30(5): 1386–1406. http://www.jos.org.
                     cn/1000-9825/5725.htm [doi: 10.13328/j.cnki.jos.005725]
                 [10]   何吉元, 孟昭鹏, 陈翔, 王赞, 樊向宇. 一种半监督集成跨项目软件缺陷预测方法. 软件学报, 2017, 28(6): 1455–1473. http://www.jos.
   138   139   140   141   142   143   144   145   146   147   148