Page 228 - 《软件学报》2025年第5期
P. 228
2128 软件学报 2025 年第 36 卷第 5 期
Data Mining. Atlantic City: IEEE, 2015. 301–309. [doi: 10.1109/ICDM.2015.84]
[17] Jakubovitz D, Giryes R. Improving DNN robustness to adversarial attacks using Jacobian regularization. In: Proc. of the 15th European
Conf. on Computer Vision. Munich: Springer, 2018. 525–541. [doi: 10.1007/978-3-030-01258-8_32]
[18] Chan A, Tay Y, Ong YS, Fu J. Jacobian adversarially regularized networks for robustness. In: Proc. of the 8th Int’l Conf. on Learning
Representation. Addis Ababa: OpenReview.net, 2020. 1–13.
[19] Moosavi-Dezfooli SM, Fawzi A, Uesato J, Frossard P. Robustness via curvature regularization, and vice versa. In: Proc. of the 2019
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 9070–9078. [doi: 10.1109/CVPR.2019.00929]
[20] Guo C, Rana M, Cissé M, van der Maaten L. Countering adversarial images using input transformations. In: Proc. of the 6th Int’l Conf.
on Learning Representations. Vancouver: OpenReview.net, 2018. 1–12.
[21] Rebuffi SA, Gowal S, Calian DA, Stimberg F, Wiles O, Mann TA. Data augmentation can improve robustness. In: Proc. of the 35th Conf.
on Neural Information Processing Systems. 2021. 29935–29948.
[22] Wang YS, Zou DF, Yi JF, Bailey J, Ma XJ, Gu QQ. Improving adversarial robustness requires revisiting misclassified examples. In: Proc.
of the 8th Int’l Conf. on Learning Representations. Addis Ababa: OpenReview.net, 2020. 1–13.
[23] Chen ZM, Xue W, Tian WW, Wu YH, Hua B. Toward deep neural networks robust to adversarial examples, using augmented data
importance perception. Journal of Electronic Imaging, 2022, 31(6): 063046. [doi: 10.1117/1.JEI.31.6.063046]
[24] Jin GJ, Yi XP, Wu DY, Mu RH, Huang XW. Randomized adversarial training via Taylor expansion. In: Proc. of the 2023 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 16447–16457. [doi: 10.1109/CVPR52729.2023.01578]
[25] Tsipras D, Santurkar S, Engstrom LG, Turner AM, Madry A. Robustness may be at odds with accuracy. In: Proc. of the 7th Int’l Conf. on
Learning Representations. New Orleans, 2019. 1–24.
[26] Zhang HY, Yu YD, Jiao JT, Xing E, El Ghaoui L, Jordan M. Theoretically principled trade-off between robustness and accuracy. In:
Proc. of the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 12907–12929.
[27] Co KT, Martinez-Rego D, Hau Z, Lupu EC. Jacobian ensembles improve robustness trade-offs to adversarial attacks. In: Proc. of the 31st
Int’l Conf. on Artificial Neural Networks. Bristol: Springer, 2022. 680–691. [doi: 10.1007/978-3-031-15934-3_56]
[28] Grabinski J, Gavrikov P, Keuper J, Keuper M. Robust models are less over-confident. In: Proc. of the 36th Int’l Conf. on Neural
Information Processing Systems. New Orleans: Curran Associates Inc., 2022. 2831.
[29] Zhang JF, Xu XL, Han B, Niu G, Cui LZ, Sugiyama M, Kankanhalli M. Attacks which do not kill training make adversarial learning
stronger. In: Proc. of the 37th Int’l Conf. on Machine Learning. PMLR, 2020. 11278–11287.
[30] Sharma A, Narayan A. Soft adversarial training can retain natural accuracy. In: Proc. of the 14th Int’l Conf. on Agents and Artificial
Intelligence. SciTePress, 2022. 1–7. [doi: 10.5220/0010871000003116]
[31] Gehr T, Mirman M, Drachsler-Cohen D, Tsankov P, Chaudhuri S, Vechev M. AI2: Safety and robustness certification of neural networks
with abstract interpretation. In: Proc. of the 2018 IEEE Symp. on Security and Privacy. San Francisco: IEEE, 2018. 3–18. [doi: 10.1109/
SP.2018.00058]
[32] Takase T. Feature combination mixup: Novel mixup method using feature combination for neural networks. Neural Computing and
Applications, 2023, 35(17): 12763–12774. [doi: 10.1007/s00521-023-08421-3]
[33] Papernot N, McDaniel P, Wu X, Jha S, Swami A. Distillation as a defense to adversarial perturbations against deep neural networks. In:
Proc. of the 2016 IEEE Symp. on Security and Privacy. San Jose: IEEE, 2016. 582–597. [doi: 10.1109/SP.2016.41]
[34] Dong NQ, Wang JY, Voiculescu I. Revisiting vicinal risk minimization for partially supervised multi-label classification under data
scarcity. In: Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022.
4211–4219. [doi: 10.1109/CVPRW56347.2022.00466]
[35] Hoffman J, Roberts DA, Yaida S. Robust learning with Jacobian regularization. In: Proc. of the 2020 Int’l Conf. on Learning
Representations. 2020. 1–21.
[36] Le BM, Tariq S, Woo SS. OTJR: Optimal Transport Meets Optimal Jacobian Regularization for Adversarial Robustness. In: Proc. of the
23rd IEEE Conf. on Computer Vision and Pattern Recognition. 2023. 7551–7562. [doi: 10.48550/arXiv.2303.11793]
附中文参考文献:
[5] 卢泓宇, 张敏, 刘奕群, 马少平. 卷积神经网络特征重要性分析及增强特征选择模型. 软件学报, 2017, 28(11): 2879–2890. http://www.
jos.org.cn/1000-9825/5349.htm [doi: 10.13328/j.cnki.jos.005349]
[6] 白琮, 黄玲, 陈佳楠, 潘翔, 陈胜勇. 面向大规模图像分类的深度卷积神经网络优化. 软件学报, 2018, 29(4): 1029–1038. http://www.jos.
org.cn/1000-9825/5404.htm [doi: 10.13328/j.cnki.jos.005404]