Page 211 - 《软件学报》2025年第5期
P. 211

程浩喆 等: 基于双向拟合掩码重建的多模态自监督点云表示学习                                                  2111


                  [3]  Qi Charles R, Su H, Mo KC, Guibas LJ. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proc. of the
                     2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 652–660. [doi: 10.1109/CVPR.2017.16]
                  [4]  Qi CR, Yi L, Su H, Guibas LJ. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proc. of the 31st Int’l
                     Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 5105–5114.
                  [5]  Wang Y, Sun YB, Liu ZW, Sarma SE, Bronstein MM, Solomon JM. Dynamic graph CNN for learning on point clouds. ACM Trans. on
                     Graphics, 2019, 38(5): 146. [doi: 10.1145/3326362]
                  [6]  Cheng HZ, Lu J, Luo MX, Liu W, Zhang KB. PTANet: Triple attention network for point cloud semantic segmentation. Engineering
                     Applications of Artificial Intelligence, 2021, 102: 104239. [doi: 10.1016/j.engappai.2021.104239]
                  [7]  Cheng HZ, Zhu JH, Lu J, Han X. EDGCNet: Joint dynamic hyperbolic graph convolution and dual squeeze-and-attention for 3D point
                     cloud segmentation. Expert Systems with Applications, 2024, 237: 121551. [doi: 10.1016/j.eswa.2023.121551]
                  [8]  Lu  J,  Cheng  HZ,  Luo  MX,  Liu  T,  Zhang  KB.  PUConv:  Upsampling  convolutional  network  for  point  cloud  semantic  segmentation.
                     Electronics Letters, 2020, 56(9): 435–438. [doi: 10.1049/el.2019.3705]
                  [9]  Sauder J, Sievers B. Self-supervised deep learning on point clouds by reconstructing space. In: Proc. of the 33rd Int’l Conf. on Neural
                     Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 1161.
                 [10]  Wang HC, Liu Q, Yue XY, Lasenby J, Kusner MJ. Unsupervised point cloud pre-training via occlusion completion. In: Proc. of the 2021
                     IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 9782–9792. [doi: 10.1109/ICCV48922.2021.00964]
                 [11]  Xie SN, Gu JT, Guo DM, Qi CR, Guibas L, Litany O. PointContrast: Unsupervised pre-training for 3D point cloud understanding. In:
                     Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 574–591. [doi: 10.1007/978-3-030-58580-8_34]
                 [12]  Shi  PC,  Cheng  HZ,  Han  X,  Zhou  YY,  Zhu  JH.  DualGenerator:  Information  interaction-based  generative  network  for  point  cloud
                     completion. IEEE Robotics and Automation Letters, 2023, 8(10): 6627–6634. [doi: 10.1109/LRA.2023.3310406]
                 [13]  Afham  M,  Dissanayake  I,  Dissanayake  D,  Dharmasiri  A,  Thilakarathna  K,  Rodrigo  R.  CrossPoint:  Self-supervised  cross-modal
                     contrastive  learning  for  3D  point  cloud  understanding.  In:  Proc.  of  the  2022  IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern
                     Recognition. New Orleans: IEEE, 2022. 9902–9912. [doi: 10.1109/CVPR52688.2022.00967]
                 [14]  Wu ZR, Song SR, Khosla A, Yu F, Zhang LG, Tang XO, Xiao JX. 3D ShapeNets: A deep representation for volumetric shapes. In: Proc.
                     of  the  2015  IEEE  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Boston:  IEEE,  2015.  1912–1920.  [doi:  10.1109/CVPR.2015.
                     7298801]
                 [15]  Uy MA, Pham QH, Hua BS, Nguyen T, Yeung SK. Revisiting point cloud classification: A new benchmark dataset and classification
                     model on real-world data. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 1588–1597. [doi: 10.1109/
                     ICCV.2019.00167]
                 [16]  Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang QX, Li ZM, Savarese S, Savva M, Song SR, Su H, Xiao JX, Yi L, Yu F.
                     ShapeNet: An information-rich 3D model repository. arXiv:1512.03012, 2015.
                 [17]  Yu  XM,  Tang  LL,  Rao  YM,  Huang  TJ,  Zhou  J,  Lu  JW.  Point-BERT:  Pre-training  3D  point  cloud  Transformers  with  masked  point
                     modeling. In: Proc. of the 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 19313–19322.
                     [doi: 10.1109/CVPR52688.2022.01871]
                 [18]  Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
                     31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [19]  Pang YT, Wang WX, Tay FEH, Liu W, Tian YH, Yuan L. Masked autoencoders for point cloud self-supervised learning. In: Proc. of the
                     17th European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 604–621. [doi: 10.1007/978-3-031-20086-1_35]
                 [20]  Zhang RR, Guo ZY, Fang RY, Zhao B, Wang D, Qiao Y, Li HS, Gao P. Point-M2AE: Multi-scale masked autoencoders for hierarchical
                     point cloud pre-training. In: Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates
                     Inc., 2022. 1962.
                 [21]  Liu HT, Cai M, Lee YJ. Masked discrimination for self-supervised learning on point clouds. In: Proc. of the 17th European Conf. on
                     Computer Vision. Tel Aviv: Springer, 2022. 657–675. [doi: 10.1007/978-3-031-20086-1_38]
                 [22]  Zhang ZW, Girdhar R, Joulin A, Misra I. Self-supervised pretraining of 3D features on any point-cloud. In: Proc. of the 2021 IEEE/CVF
                     Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 10252–10263. [doi: 10.1109/ICCV48922.2021.01009]
                 [23]  Wang  D,  Yang  ZX.  Self-supervised  point  cloud  understanding  via  mask  Transformer  and  contrastive  learning.  IEEE  Robotics  and
                     Automation Letters, 2023, 8(1): 184–191. [doi: 10.1109/LRA.2022.3224370]
                 [24]  Mei GF, Huang XS, Liu J, Zhang J, Wu Q. Unsupervised point cloud pre-training via contrasting and clustering. In: Proc. of the 2022
                     IEEE Int’l Conf. on Image Processing. Bordeaux: IEEE, 2022. 66–70. [doi: 10.1109/ICIP46576.2022.9897388]
                 [25]  Chen XL, He KM. Exploring simple siamese representation learning. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and
                     Pattern Recognition. Nashville: IEEE, 2021. 15750–15758. [doi: 10.1109/CVPR46437.2021.01549]
                 [26]  Chen YJ, Nießner M, Dai A. 4DContrast: Contrastive learning with dynamic correspondences for 3D scene understanding. In: Proc. of
   206   207   208   209   210   211   212   213   214   215   216