Page 213 - 《软件学报》2025年第5期
P. 213

程浩喆 等: 基于双向拟合掩码重建的多模态自监督点云表示学习                                                  2113


                 [47]  Cheng  HZ,  Han  X,  Shi  PC,  Zhu  JH,  Li  ZY.  Multi-trusted  cross-modal  information  bottleneck  for  3D  self-supervised  representation
                     learning. Knowledge-based Systems, 2024, 283: 111217. [doi: 10.1016/j.knosys.2023.111217]
                 [48]  Wu Y, Liu JM, Gong MG, Gong PR, Fan XL, Qin AK, Miao QG, Ma WP. Self-supervised intra-modal and cross-modal contrastive
                     learning for point cloud understanding. IEEE Trans. on Multimedia, 2024, 26: 1626–1638. [doi: 10.1109/TMM.2023.3284591]
                 [49]  Anvekar T, Bazazian D. GPr-Net: Geometric prototypical network for point cloud few-shot learning. In: Proc. of the 2023 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition Workshops. Vancouver: IEEE, 2023. 4178–4187. [doi: 10.1109/CVPRW59228.2023.
                     00440]
                 [50]  Sharma C, Kaul M. Self-supervised few-shot learning on point clouds. In: Proc. of the 34th Int’l Conf. on Neural Information Processing
                     Systems. 2020. 7212–7221.
                 [51]  Snell  J,  Swersky  K,  Zemel  R.  Prototypical  networks  for  few-shot  learning.  In:  Proc.  of  the  31st  Int’l  Conf.  on  Neural  Information
                     Processing Systems. Long Beach: Curran Associates Inc., 2017. 4080–4090.
                 [52]  Huang TY, Dong BW, Yang YH, Huang XS, Lau RWH, Ouyang WL, Zuo WM. CLIP2Point: Transfer CLIP to point cloud classification
                     with image-depth pre-training. In: Proc. of the 2023 IEEE/CVF Int’l Conf. on Computer Vision. Paris: IEEE, 2023. 22157–22167. [doi:
                     10.1109/ICCV51070.2023.02025]
                 [53]  Choy C, Gwak J, Savarese S. 4D spatio-temporal ConvNets: Minkowski convolutional neural networks. In: Proc. of the 2019 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 3075–3084. [doi: 10.1109/CVPR.2019.00319]
                 [54]  Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Medical
                     Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241. [doi: 10.1007/978-3-319-24574-4_28]
                 [55]  Liu Z, Mao HZ, Wu CY, Feichtenhofer C, Darrell T, Xie SN. A ConvNet for the 2020s. In: Proc. of the 2022 IEEE/CVF Conf. on
                     Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 11976–11986. [doi: 10.1109/CVPR52688.2022.01167]
                 [56]  Kirillov A, Girshick R, He KM, Dollár P. Panoptic feature pyramid networks. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision
                     and Pattern Recognition. Long Beach: IEEE, 2019. 6399–6408. [doi: 10.1109/CVPR.2019.00656]
                 [57]  Xiao TT, Liu YC, Zhou BL, Jiang YN, Sun J. Unified perceptual parsing for scene understanding. In: Proc. of the 15th European Conf. on
                     Computer Vision. Munich: Springer, 2018. 418–434. [doi: 10.1007/978-3-030-01228-1_26]

                 附中文参考文献:
                  [1]  朱向雷, 王海弛, 尤翰墨, 张蔚珩, 张颖异, 刘爽, 陈俊洁, 王赞, 李克秋. 自动驾驶智能系统测试研究综述. 软件学报, 2021, 32(7):
                     2056–2077. http://www.jos.org.cn/1000-9825/6266.htm [doi: 10.13328/j.cnki.jos.006266]
                  [2]  闫涛, 高浩轩, 张江峰, 钱宇华, 张临垣. 分组并行的轻量化实时微观三维形貌重建方法. 软件学报, 2024, 35(4): 1717–1731. http://
                     www.jos.org.cn/1000-9825/7013.htm [doi: 10.13328/j.cnki.jos.007013]
                 [36]  陈浩楠, 朱映映, 赵骏骐, 田奇. 基于多模态关系建模的三维形状识别方法. 软件学报, 2024, 35(5): 2208–2219. http://www.jos.org.cn/
                     1000-9825/7026.htm [doi: 10.13328/j.cnki.jos.007026]


                             程浩喆(1997-), 男, 博士生, 主要研究领域为深                 胡乃文(2000-), 男, 硕士生, 主要研究领域为深
                            度学习, 三维计算机视觉.                                度学习, 三维计算机视觉.




                             祝继华(1982-), 男, 博士, 教授, 博士生导师,                谢奕凡(2001-), 男, 硕士生, 主要研究领域为深

                            CCF  高级会员, 主要研究领域为计算机视觉, 机                   度学习, 三维计算机视觉.

                            器学习.




                             史鹏程(1998-), 男, 硕士生, 主要研究领域为深                 李仕奇(2000-), 男, 硕士生, 主要研究领域为深

                            度学习, 三维视计算机觉.                                度学习, 三维计算机视觉.
   208   209   210   211   212   213   214   215   216   217   218