Page 214 - 《软件学报》2025年第5期
P. 214
软件学报 ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
2025,36(5):2114−2129 [doi: 10.13328/j.cnki.jos.007188] [CSTR: 32375.14.jos.007188] http://www.jos.org.cn
©中国科学院软件研究所版权所有. Tel: +86-10-62562563
*
面向卷积神经网络泛化性和健壮性权衡的标签筛选方法
王益民, 龙显忠, 李 云, 熊 健
(南京邮电大学 计算机学院、软件学院、网络空间安全学院, 江苏 南京 210023)
通信作者: 龙显忠, E-mail: lxz@njupt.edu.cn
摘 要: 虽然卷积神经网络凭借优异的泛化性能被广泛应用在图像识别领域中, 但被噪声污染的对抗样本可以轻
松欺骗训练完全的网络模型, 带来安全性的隐患. 现有的许多防御方法虽然提高了模型的健壮性, 但大多数不可避
免地牺牲了模型的泛化性. 为了缓解这一问题, 提出了标签筛选权重参数正则化方法, 在模型训练过程中利用样本
的标签信息权衡模型的泛化性和健壮性. 先前的许多健壮模型训练方法存在下面两个问题: 1) 大多通过增加训练
集样本的数量或复杂度来提高模型的健壮性, 这不仅弱化了干净样本在模型训练过程中的主导作用, 也使得训练
任务的工作量大大提高; 2) 样本的标签信息除了被用于与模型预测结果对比来控制模型参数的更新方向以外, 在
模型训练中几乎不被另作使用, 这无疑忽视了隐藏于样本标签中的更多信息. 所提方法通过样本的正确标签和对
抗样本的分类标签筛选出模型在分类该样本时起决定性作用的权重参数, 对这些参数进行正则优化, 达到模型泛
化性和健壮性权衡的效果. 在 MNIST、CIFAR-10 和 CIFAR-100 数据集上的实验和分析表明, 提出的方法能够取
得很好的训练效果.
关键词: 卷积神经网络; 对抗学习; 标签信息; 正则化
中图法分类号: TP18
中文引用格式 王益民, 龙显忠, 李云, 熊健. 面向卷积神经网络泛化性和健壮性权衡的标签筛选方法. 软件学报, 2025,
36(5): 2114–2129. http://www.jos.org.cn/1000-9825/7188.htm
英文引用格式: Wang YM, Long XZ, Li Y, Xiong J. Label Screening Method for Generalization and Robustness Trade-off in
Convolutional Neural Network. Ruan Jian Xue Bao/Journal of Software, 2025, 36(5): 2114–2129 (in Chinese). http://www.jos.org.cn/
1000-9825/7188.htm
Label Screening Method for Generalization and Robustness Trade-off in Convolutional Neural
Network
WANG Yi-Min, LONG Xian-Zhong, LI Yun, XIONG Jian
(School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
Abstract: Although convolutional neural networks (CNNs) are widely used in image recognition due to their excellent generalization
performance, adversarial samples contaminated by noise can easily deceive fully trained network models, posing security risks. Many
existing defense methods improve the robustness of models, but most inevitably sacrifice model generalization. To alleviate this issue, a
label-filtered weight parameter regularization method is proposed to balance the generalization and robustness of models using the label
information of samples during model training. Many previous robust model training methods suffer from two main issues: 1) The
robustness of models is mainly enhanced by increasing the quantity or complexity of training set samples, which not only diminishes the
dominant role of clean samples in model training but also significantly increases the workload of training tasks. 2) The label information
of samples is used only to compare with model predictions to control the direction of model parameter updates, neglecting the additional
information hidden in sample labels. The proposed method selects weight parameters that play a decisive role in classifying samples by
filtering the correct labels of samples and the classification labels of adversarial samples and optimizes these parameters regularly to
* 基金项目: 国家自然科学基金 (62371254, 61906098)
收稿时间: 2023-11-07; 修改时间: 2023-12-24, 2024-02-18; 采用时间: 2024-03-15; jos 在线出版时间: 2024-06-14
CNKI 网络首发时间: 2024-06-17