Page 177 - 《软件学报》2025年第5期
P. 177
张文跃 等: 基于高斯混合多层自编码器的情感漂移检测模型 2077
13328/j.cnki.jos.006476]
[26] Tartakovsky AG, Moustakides GV. State-of-the-art in Bayesian changepoint detection. Sequential Analysis, 2010, 29(2): 125–145. [doi:
10.1080/07474941003740997]
[27] Ikonomovska E, Gama J, Džeroski S. Learning model trees from evolving data streams. Data Mining and Knowledge Discovery, 2011,
23(1): 128–168. [doi: 10.1007/s10618-010-0201-y]
[28] Ross GJ, Adams NM, Tasoulis DK, Hand DJ. Exponentially weighted moving average charts for detecting concept drift. Pattern
Recognition Letters, 2012, 33(2): 191–198. [doi: 10.1016/j.patrec.2011.08.019]
[29] Raza H, Prasad G, Li YH. EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments.
Pattern Recognition, 2015, 48(3): 659–669. [doi: 10.1016/j.patcog.2014.07.028]
[30] Zhou D, Liu L, Lai X. The improved EWMA chart for heteroscedasticity process. Annals of Data Science, 2018, 5(1): 21–27. [doi: 10.
1007/s40745-017-0133-0]
[31] Bifet A, Gavalda R. Learning from time-changing data with adaptive windowing. In: Proc. of the 7th SIAM Int’l Conf. on Data Mining.
Minneapolis: SIAM, 2007. 443–448. [doi: 10.1137/1.9781611972771.4]
[32] Yu SJ, Wang XY, Príncipe JC. Request-and-reverify: Hierarchical hypothesis testing for concept drift detection with expensive labels. In:
Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: IJCAI, 2018. 3033–3039. [doi: 10.24963/ijcai.2018/421]
[33] Nguyen TTT, Nguyen TT, Liew AWC, Wang SL. Variational inference based Bayes online classifiers with concept drift adaptation.
Pattern Recognition, 2018, 81: 280–293. [doi: 10.1016/j.patcog.2018.04.007]
[34] Krawczyk B, Woźniak M. One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft
Computing, 2015, 19(12): 3387–3400. [doi: 10.1007/s00500-014-1492-5]
[35] Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M. Ensemble learning for data stream analysis: A survey. Information Fusion,
2017, 37: 132–156. [doi: 10.1016/j.inffus.2017.02.004]
[36] Wang S, Minku LL, Yao X. Resampling-based ensemble methods for online class imbalance learning. IEEE Trans. on Knowledge and
Data Engineering, 2015, 27(5): 1356–1368. [doi: 10.1109/TKDE.2014.2345380]
[37] Song G, Ye YM, Zhang HJ, Xu XF, Lau RYK, Liu F. Dynamic clustering forest: An ensemble framework to efficiently classify textual
data stream with concept drift. Information Sciences, 2016, 357: 125–143. [doi: 10.1016/j.ins.2016.03.043]
[38] Brzezinski D, Stefanowski J. Reacting to different types of concept drift: The accuracy updated ensemble algorithm. IEEE Trans. on
Neural Networks and Learning Systems, 2014, 25(1): 81–94. [doi: 10.1109/TNNLS.2013.2251352]
[39] Lu N, Lu J, Zhang GQ, De Mantaras RL. A concept drift-tolerant case-base editing technique. Artificial Intelligence, 2016, 230: 108–133.
[doi: 10.1016/j.artint.2015.09.009]
[40] Bu L, Alippi C, Zhao DB. A pdf-free change detection test based on density difference estimation. IEEE Trans. on Neural Networks and
Learning Systems, 2018, 29(2): 324–334. [doi: 10.1109/TNNLS.2016.2619909]
[41] Bu L, Zhao DB, Alippi C. An incremental change detection test based on density difference estimation. IEEE Trans. on Systems, Man,
and Cybernetics: Systems, 2017, 47(10): 2714–2726. [doi: 10.1109/TSMC.2017.2682502]
[42] Iosifidis V, Oelschlager A, Ntoutsi E. Sentiment classification over opinionated data streams through informed model adaptation. In:
Proc. of the 21st Int’l Conf. on Theory and Practice of Digital Libraries. Thessaloniki: Springer, 2017. 369–381. [doi: 10.1007/978-3-319-
67008-9_29]
[43] Bouchachia A. Fuzzy classification in dynamic environments. Soft Computing, 2011, 15(5): 1009–1022. [doi: 10.1007/s00500-010-0657-0]
[44] Gama J, Medas P, Castillo G, Rodrigues P. Learning with drift detection. In: Proc. of the 17th Brazilian Symp. on Artificial Intelligence.
Sao Luis: Springer, 2004. 286–295. [doi: 10.1007/978-3-540-28645-5_29]
[45] Bifet A, De Francisci Morales G, Read J, Holmes G, Pfahringer B. Efficient online evaluation of big data stream classifiers. In: Proc. of
the 21st ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Sydney: ACM, 2015. 59–68. [doi: 10.1145/2783258.
2783372]
附中文参考文献:
[3] 叶静, 向露, 宗成庆. 属性建模与课程学习相结合的属性级情感分类方法. 软件学报, 2024, 35(9): 4377–4389. http://www.jos.org.cn/
1000-9825/6963.htm [doi: 10.13328/j.cnki.jos.006963]
[4] 赵妍妍, 陆鑫, 赵伟翔, 田一间, 秦兵. 情感对话技术综述. 软件学报, 2024, 35(3): 1377–1402. http://www.jos.org.cn/1000-9825/6807.
htm [doi: 10.13328/j.cnki.jos.006807]
[5] 梁梦英, 李德玉, 王素格, 廖健, 郑建兴, 陈千. Senti-PG-MMR: 多文档游记情感摘要生成方法. 中文信息学报, 2022, 36(3): 128–135.