Page 176 - 《软件学报》2025年第5期
P. 176

2076                                                       软件学报  2025  年第  36  卷第  5  期


                     encoder. In: Proc. of the 2020 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
                     Linguistics, 2020. 3762–3767. [doi: 10.18653/v1/2020.emnlp-main.307]
                  [3]  Ye  J,  Xiang  L,  Zong  CQ.  Aspect-level  sentiment  classification  combining  aspect  modeling  and  curriculum  learning.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2024, 35(9): 4377–4389 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6963.htm [doi: 10.
                     13328/j.cnki.jos.006963]
                  [4]  Zhao YY, Lu X, Zhao WX, Tian YJ, Qin B. Survey on emotional dialogue techniques. Ruan Jian Xue Bao/Journal of Software, 2024,
                     35(3): 1377–1402 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6807.htm [doi: 10.13328/j.cnki.jos.006807]
                  [5]  Liang MY, Li DY, Wang SG, Liao J, Zheng JX, Chen Q. Senti-PG-MMR: Research on generation method of sentimental summary of
                     multi-document travel notes. Journal of Chinese Information Processing, 2022, 36(3): 128–135 (in Chinese with English abstract). [doi:
                     10.3969/j.issn.1003-0077.2022.03.015]
                  [6]  Xiong SF, Wang KY, Ji DH, Wang BK. A short text sentiment-topic model for product reviews. Neurocomputing, 2018, 297: 94–102.
                     [doi: 10.1016/j.neucom.2018.02.034]
                  [7]  Catal C, Nangir M. A sentiment classification model based on multiple classifiers. Applied Soft Computing, 2017, 50: 135–141. [doi: 10.
                     1016/j.asoc.2016.11.022]
                  [8]  Yang M, Yin WP, Qu Q, Tu WT, Shen Y, Chen XJ. Neural attentive network for cross-domain aspect-level sentiment classification.
                     IEEE Trans. on Affective Computing, 2021, 12(3): 761–775. [doi: 10.1109/TAFFC.2019.2897093]
                  [9]  Chen JJ, Hou HX, Gao J, Ji YT, Bai TG. RGCN: Recurrent graph convolutional networks for target-dependent sentiment analysis. In:
                     Proc. of the 12th Int’l Conf. on Knowledge Science, Engineering and Management. Athens: Springer, 2019. 667–675. [doi: 10.1007/978-
                     3-030-29551-6_59]
                 [10]  Zhao CJ, Wang SG, Li DY. Research progress on cross-domain text sentiment classification. Ruan Jian Xue Bao/Journal of Software,
                     2020, 31(6): 1723–1746 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6029.htm [doi: 10.13328/j.cnki.jos.006029]
                 [11]  Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv:1312.6114, 2014.
                 [12]  Wu CH, Wu FZ, Wu SX, Yuan ZG, Liu JX, Huang YF. Semi-supervised dimensional sentiment analysis with variational autoencoder.
                     Knowledge-based Systems, 2019, 165: 30–39. [doi: 10.1016/j.knosys.2018.11.018]
                 [13]  Fu XH, Wei YZ, Xu F, Wang T, Lu Y, Li JQ, Huang JZ. Semi-supervised aspect-level sentiment classification model based on variational
                     autoencoder. Knowledge-based Systems, 2019, 171: 81–92. [doi: 10.1016/j.knosys.2019.02.008]
                 [14]  Wang YY, Meng XJ, Liu XM. Differentially private recurrent variational autoencoder for text privacy preservation. Mobile Networks and
                     Applications, 2023, 28: 1565–1580. [doi: 10.1007/s11036-023-02096-9]
                 [15]  Kong X, Li BH, Neubig G, Hovy E, Yang YM. An adversarial approach to high-quality, sentiment-controlled neural dialogue generation.
                     arXiv:1901.07129, 2019.
                 [16]  Liang XW, Du JC, Niu TY, Zhou LJ, Xu RF. Knowledge interpolated conditional variational auto-encoder for knowledge grounded
                     dialogues. Applied Sciences, 2023, 13(15): 8707. [doi: 10.3390/APP13158707]
                 [17]  Yang Z, Chen ZH, Cai TC, Wang YF, Liao XW. A survey of deep learning based emotional dialogue response. Chinese Journal of
                     Computers, 2023, 46(12): 2489–2519 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2023.02489]
                 [18]  Hoang T, Le H, Quan T. Towards autoencoding variational inference for aspect-based opinion summary. Applied Artificial Intelligence,
                     2019, 33(9): 796–816. [doi: 10.1080/08839514.2019.1630148]
                 [19]  Xiong Y, Yan MH, Hu X, Ren CH, Tian H. An unsupervised opinion summarization model fused joint attention and dictionary learning.
                     The Journal of Supercomputing, 2023, 79(16): 17759–17783. [doi: 10.1007/s11227-023-05316-x]
                 [20]  Zhao SJ, Ren HY, Yuan A, Song JM, Goodman N, Ermon S. Bias and generalization in deep generative models: An empirical study. In:
                     Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 10815–10824.
                 [21]  Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever T, Welling M. Improved variational inference with inverse autoregressive
                     flow. In: Proc. of the 30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 4743–4751.
                 [22]  Sønderby  CK,  Raiko  T,  Maaløe  L,  Sønderby  SK,  Winther  O.  How  to  train  deep  variational  autoencoders  and  probabilistic  ladder
                     networks. arXiv:1602.02282, 2016.
                 [23]  Pu YC, Gan Z, Henao R, Yuan X, Li CY, Stevens A, Carin L. Variational autoencoder for deep learning of images, labels and captions.
                     In: Proc. of the 30th Int’l Conf. on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 2360–2368.
                 [24]  Bai RN, Huang RZ, Qin YB, Chen YP, Lin C. HVAE: A deep generative model via hierarchical variational auto-encoder for multi-view
                     document modeling. Information Sciences, 2023, 623: 40–55. [doi: 10.1016/j.ins.2022.10.052]
                 [25]  Wen YM, Liu S, Miao YQ, Yi XH, Liu CJ. Survey on semi-supervised classification of data streams with concept drifts. Ruan Jian Xue
                     Bao/Journal of Software, 2022, 33(4): 1287–1314 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6476.htm [doi: 10.
   171   172   173   174   175   176   177   178   179   180   181