Page 432 - 《软件学报》2025年第4期
P. 432

1838                                                       软件学报  2025  年第  36  卷第  4  期


                      31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [27]  Wang S, Li YR, Zhang J, Meng QY, Meng LW, Gao F. PM 2.5 -GNN: A domain knowledge enhanced graph neural network for PM 2.5
                      forecasting. In: Proc. of the 28th Int’l Conf. on Advances in Geographic Information Systems. Seattle: ACM, 2020. 163–166. [doi: 10.
                      1145/3397536.3422208]
                 [28]  Wang CY, Lin ZY, Yang XC, Sun J, Yue MX, Shahabi C. HAGEN: Homophily-aware graph convolutional recurrent network for crime
                      forecasting. In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 4193–4200. [doi: 10.1609/aaai.v36i4.20338]
                 [29]  Zheng CP, Fan XL, Wang C, Qi JZ. GMAN: A graph multi-attention network for traffic prediction. In: Proc. of the 34th AAAI Conf. on
                      Artificial Intelligence. New York: AAAI, 2020. 1234–1241. [doi: 10.1609/aaai.v34i01.5477]
                 [30]  Wang LJ, Adiga A, Chen JZ, Sadilek A, Venkatramanan S, Marathe M. CausalGNN: Causal-based graph neural networks for spatio-
                      temporal epidemic forecasting. In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 12191–12199. [doi: 10.1609/
                      aaai.v36i11.21479]
                 [31]  Yu S, Xia F, Li SH, Hou ML, Sheng QZ. Spatio-temporal graph learning for epidemic prediction. ACM Trans. on Intelligent Systems
                      and Technology, 2023, 14(2): 36. [doi: 10.1145/3579815]
                 [32]  Zhou  Q,  Gu  JJ,  Lu  XJ,  Zhuang  FZ,  Zhao  YC,  Wang  QH,  Zhang  X.  Modeling  heterogeneous  relations  across  multiple  modes  for
                      potential crowd flow prediction. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 4723–4731. [doi: 10.1609/aaai.
                      v35i5.16603]
                 [33]  Hochreiter  S,  Schmidhuber  J.  Long  short-term  memory.  Neural  Computation,  1997,  9(8):  1735–1780.  [doi:  10.1162/neco.1997.9.8.
                      1735]
                 [34]  Zhang JS, An KQ, Liu GP, Wen X, Hu RB, Shao J. Understanding the semantics of GPS-based trajectories for road closure detection.
                      In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023. 5554–5563. [doi: 10.
                      1145/3580305.3599926]
                 [35]  Zhang  ZW,  Wang  HJ,  Fan  ZP,  Song  X,  Shibasaki  R.  Missing  road  condition  imputation  using  a  multi-view  heterogeneous  graph
                      network from GPS trajectory. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(5): 4917–4931. [doi: 10.1109/TITS.2023.
                      3243087]
                 [36]  Hong HT, Lin YC, Yang XQ, Yang XQ, Li Z, Fu K, Wang Z, Qie XH, Ye JP. HetETA: Heterogeneous information network embedding
                      for estimating time of arrival. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020.
                      2444–2454. [doi: 10.1145/3394486.3403294]
                 [37] probabilistic time series forecasting. arXiv:2310.08278, 2024.
                      Ling S, Yu Z, Cao SS, Zhang HP, Hu SM. STHAN: Transportation demand forecasting with compound spatio-temporal relationships.
                      ACM Trans. on Knowledge Discovery from Data, 2023, 17(4): 54. [doi: 10.1145/3565578]
                 [38]  Li ZH, Huang C, Xia LH, Xu Y, Pei J. Spatial-temporal hypergraph self-supervised learning for crime prediction. In: Proc. of the 38th
                      IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 2984–2996. [doi: 10.1109/ICDE53745.2022.00269]
                 [39]  Wang JC, Zhang Y, Wei Y, Hu YL, Piao XL, Yin BC. Metro passenger flow prediction via dynamic hypergraph convolution networks.
                      IEEE Trans. on Intelligent Transportation Systems, 2021, 22(12): 7891–7903. [doi: 10.1109/TITS.2021.3072743]
                 [40]  Yin N, Feng FL, Luo ZG, Zhang X, Wang WJ, Luo X, Chen C, Hua XS. Dynamic hypergraph convolutional network. In: Proc. of the
                      38th IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 1621–1634. [doi: 10.1109/ICDE53745.2022.00167]
                 [41]  Zhao YS, Luo X, Ju W, Chen C, Hua XS, Zhang M. Dynamic hypergraph structure learning for traffic flow forecasting. In: Proc. of the
                      39th IEEE Int’l Conf. on Data Engineering. Anaheim: IEEE, 2023. 2303–2316. [doi: 10.1109/ICDE55515.2023.00178]
                 [42]  Garza A, Challu C, Mergenthaler-Canseco M. TimeGPT-1. arXiv:2310.03589, 2024.
                 [43]  Rasul K, Ashok A, Williams AR, Ghonia H, Bhagwatkar R, Khorasani A, Bayazi MJD, Adamopoulos G, Riachi R, Hassen N, Biloš M,
                      Garg  S,  Schneider  A,  Chapados  N,  Drouin  A,  Zantedeschi  V,  Nevmyvaka  Y,  Rish  I.  Lag-Llama:  Towards  foundation  models  for

                 [44]  Xue H, Salim FD. PromptCast: A new prompt-based learning paradigm for time series forecasting. IEEE Trans. on Knowledge and Data
                      Engineering, 2024, 36(11): 6851–6864. [doi: 10.1109/TKDE.2023.3342137]
                 [45]  Jin  M,  Wang  SY,  Ma  LT,  Chu  ZX,  Zhang  JY,  Shi  XM,  Chen  PY,  Liang  YX,  Li  YF,  Pan  SR,  Wen  QS.  Time-LLM:  Time  series
                      forecasting  by  reprogramming  large  language  models.  In:  Proc.  of  the  12th  Int’l  Conf.  on  Learning  Representations.  Vienna:
                      OpenReview.net, 2024.
                 [46]  Kim  T,  Kim  J,  Tae  Y,  Park  C,  Choi  JH,  Choo  J.  Reversible  instance  normalization  for  accurate  time-series  forecasting  against
                      distribution shift. In: Proc. of the 10th Int’l Conf. on Learning Representations. OpenReview.net, 2022.
                 [47]  Nie YQ, Nguyen NH, Sinthong P, Kalagnanam J. A time series is worth 64 words: Long-term forecasting with transformers. In: Proc. of
                      the 11th Int’l Conf. on Learning Representations. Kigali: OpenReview.net, 2023.
   427   428   429   430   431   432   433   434   435   436   437