Page 432 - 《软件学报》2025年第4期
P. 432
1838 软件学报 2025 年第 36 卷第 4 期
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
[27] Wang S, Li YR, Zhang J, Meng QY, Meng LW, Gao F. PM 2.5 -GNN: A domain knowledge enhanced graph neural network for PM 2.5
forecasting. In: Proc. of the 28th Int’l Conf. on Advances in Geographic Information Systems. Seattle: ACM, 2020. 163–166. [doi: 10.
1145/3397536.3422208]
[28] Wang CY, Lin ZY, Yang XC, Sun J, Yue MX, Shahabi C. HAGEN: Homophily-aware graph convolutional recurrent network for crime
forecasting. In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 4193–4200. [doi: 10.1609/aaai.v36i4.20338]
[29] Zheng CP, Fan XL, Wang C, Qi JZ. GMAN: A graph multi-attention network for traffic prediction. In: Proc. of the 34th AAAI Conf. on
Artificial Intelligence. New York: AAAI, 2020. 1234–1241. [doi: 10.1609/aaai.v34i01.5477]
[30] Wang LJ, Adiga A, Chen JZ, Sadilek A, Venkatramanan S, Marathe M. CausalGNN: Causal-based graph neural networks for spatio-
temporal epidemic forecasting. In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 12191–12199. [doi: 10.1609/
aaai.v36i11.21479]
[31] Yu S, Xia F, Li SH, Hou ML, Sheng QZ. Spatio-temporal graph learning for epidemic prediction. ACM Trans. on Intelligent Systems
and Technology, 2023, 14(2): 36. [doi: 10.1145/3579815]
[32] Zhou Q, Gu JJ, Lu XJ, Zhuang FZ, Zhao YC, Wang QH, Zhang X. Modeling heterogeneous relations across multiple modes for
potential crowd flow prediction. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 4723–4731. [doi: 10.1609/aaai.
v35i5.16603]
[33] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.
1735]
[34] Zhang JS, An KQ, Liu GP, Wen X, Hu RB, Shao J. Understanding the semantics of GPS-based trajectories for road closure detection.
In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023. 5554–5563. [doi: 10.
1145/3580305.3599926]
[35] Zhang ZW, Wang HJ, Fan ZP, Song X, Shibasaki R. Missing road condition imputation using a multi-view heterogeneous graph
network from GPS trajectory. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(5): 4917–4931. [doi: 10.1109/TITS.2023.
3243087]
[36] Hong HT, Lin YC, Yang XQ, Yang XQ, Li Z, Fu K, Wang Z, Qie XH, Ye JP. HetETA: Heterogeneous information network embedding
for estimating time of arrival. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020.
2444–2454. [doi: 10.1145/3394486.3403294]
[37] probabilistic time series forecasting. arXiv:2310.08278, 2024.
Ling S, Yu Z, Cao SS, Zhang HP, Hu SM. STHAN: Transportation demand forecasting with compound spatio-temporal relationships.
ACM Trans. on Knowledge Discovery from Data, 2023, 17(4): 54. [doi: 10.1145/3565578]
[38] Li ZH, Huang C, Xia LH, Xu Y, Pei J. Spatial-temporal hypergraph self-supervised learning for crime prediction. In: Proc. of the 38th
IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 2984–2996. [doi: 10.1109/ICDE53745.2022.00269]
[39] Wang JC, Zhang Y, Wei Y, Hu YL, Piao XL, Yin BC. Metro passenger flow prediction via dynamic hypergraph convolution networks.
IEEE Trans. on Intelligent Transportation Systems, 2021, 22(12): 7891–7903. [doi: 10.1109/TITS.2021.3072743]
[40] Yin N, Feng FL, Luo ZG, Zhang X, Wang WJ, Luo X, Chen C, Hua XS. Dynamic hypergraph convolutional network. In: Proc. of the
38th IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 1621–1634. [doi: 10.1109/ICDE53745.2022.00167]
[41] Zhao YS, Luo X, Ju W, Chen C, Hua XS, Zhang M. Dynamic hypergraph structure learning for traffic flow forecasting. In: Proc. of the
39th IEEE Int’l Conf. on Data Engineering. Anaheim: IEEE, 2023. 2303–2316. [doi: 10.1109/ICDE55515.2023.00178]
[42] Garza A, Challu C, Mergenthaler-Canseco M. TimeGPT-1. arXiv:2310.03589, 2024.
[43] Rasul K, Ashok A, Williams AR, Ghonia H, Bhagwatkar R, Khorasani A, Bayazi MJD, Adamopoulos G, Riachi R, Hassen N, Biloš M,
Garg S, Schneider A, Chapados N, Drouin A, Zantedeschi V, Nevmyvaka Y, Rish I. Lag-Llama: Towards foundation models for
[44] Xue H, Salim FD. PromptCast: A new prompt-based learning paradigm for time series forecasting. IEEE Trans. on Knowledge and Data
Engineering, 2024, 36(11): 6851–6864. [doi: 10.1109/TKDE.2023.3342137]
[45] Jin M, Wang SY, Ma LT, Chu ZX, Zhang JY, Shi XM, Chen PY, Liang YX, Li YF, Pan SR, Wen QS. Time-LLM: Time series
forecasting by reprogramming large language models. In: Proc. of the 12th Int’l Conf. on Learning Representations. Vienna:
OpenReview.net, 2024.
[46] Kim T, Kim J, Tae Y, Park C, Choi JH, Choo J. Reversible instance normalization for accurate time-series forecasting against
distribution shift. In: Proc. of the 10th Int’l Conf. on Learning Representations. OpenReview.net, 2022.
[47] Nie YQ, Nguyen NH, Sinthong P, Kalagnanam J. A time series is worth 64 words: Long-term forecasting with transformers. In: Proc. of
the 11th Int’l Conf. on Learning Representations. Kigali: OpenReview.net, 2023.