Page 436 - 《软件学报》2025年第4期
P. 436
1842 软件学报 2025 年第 36 卷第 4 期
[115] Tian YJ, Dong KW, Zhang CH, Zhang CX, Chawla NV. Heterogeneous graph masked autoencoders. In: Proc. of the 37th AAAI Conf.
on Artificial Intelligence. Washington: AAAI, 2023. 9997–10005. [doi: 10.1609/aaai.v37i8.26192]
[116] Sun MC, Zhou KX, He X, Wang Y, Wang X. GPPT: Graph pre-training and prompt tuning to generalize graph neural networks. In:
Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 1717–1727. [doi: 10.1145/
3534678.3539249]
[117] Sun XG, Cheng H, Li J, Liu B, Guan JH. All in one: Multi-task prompting for graph neural networks. In: Proc. of the 29th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023. 2120–2131. [doi: 10.1145/3580305.3599256]
[118] Li SR, Han XT, Bai J. AdapterGNN: Efficient delta tuning improves generalization ability in graph neural networks.
arXiv:2304.09595v1, 2023.
[119] Gui AC, Ye JQ, Xiao H. G-Adapter: Towards structure-aware parameter-efficient transfer learning for graph Transformer networks. In:
Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI, 2024. 12226–12234. [doi: 10.1609/aaai.v38i11.29112]
[120] Tian YJ, Pei SC, Zhang XL, Zhang CX, Chawla NV. Knowledge distillation on graphs: A survey. arXiv:2302.00219, 2023.
[121] Zhang SC, Sohrabizadeh A, Wan C, Huang ZJ, Hu ZN, Wang YW, Lin YY, Cong J, Sun YZ. A survey on graph neural network
acceleration: Algorithms, systems, and customized hardware. arXiv:2306.14052, 2023.
[122] Wan BR, Zhao JT, Wu C. Adaptive message quantization and parallelization for distributed full-graph GNN training. In: Proc. of the 6th
MLSys Conf. Miami Beach: mlsys.org, 2023. 5.
[123] Jin BW, Liu G, Han C, Jiang M, Ji H, Han JW. Large language models on graphs: A comprehensive survey. arXiv:2312.02783, 2024.
[124] Zhang ZY, Wang X, Zhang ZW, Li HY, Qin YJ, Zhu WW. LLM4DyG: Can large language models solve spatial-temporal problems on
dynamic graphs? In: Proc. of the 30th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Barcelona: ACM, 2024.
4350–4361. [doi: 10.1145/3637528.3671709]
[125] Wu LK, Zheng Z, Qiu ZP, Wang H, Gu HC, Shen TJ, Qin C, Zhu C, Zhu HS, Liu Q, Xiong H, Chen EH. A survey on large language
models for recommendation. World Wide Web, 2024, 27(5): 60. [doi: 10.1007/s11280-024-01291-2]
[126] Pan SR, Luo LH, Wang YF, Chen C, Wang JP, Wu XD. Unifying large language models and knowledge graphs: A roadmap. IEEE
Trans. on Knowledge and Data Engineering, 2024, 36(7): 3580–3599. [doi: 10.1109/TKDE.2024.3352100]
[127] Qian C, Tang HY, Yang ZR, Liang H, Liu Y. Can large language models empower molecular property prediction? arXiv:2307.07443,
2023.
[128] Dwivedi VP, Joshi CK, Luu AT, Laurent T, Bengio Y, Bresson X. Benchmarking graph neural networks. The Journal of Machine
Learning Research, 2024, 24(43): 1–48.
[129] California Department of Transportation. Performance measurement system (PeMS). 2001. https://pems.dot.ca.gov/
[130] Chicago: ACM, 2019. 1–10. [doi: 10.1145/3356995.3364536]
Li Y. DCRNN: Diffusion convolutional recurrent neural network. 2018. https://github.com/liyaguang/DCRNN
[131] New York City Taxi & Limousine Commission. TLC trip record data. 2015. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page
[132] Citi Bike. Citi Bike trip data. 2013. https://s3.amazonaws.com/tripdata/index.html
[133] ABIDE (Autism Brain Imaging Data Exchange). ABIDE I dataset. 2012. http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
[134] Human Connectome Project. HCP young adult: 1200 subjects data release. 2017. https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release
[135] Akaxlh. ST-SHN: Spatio-temporal self-hierarchical networks. 2021. https://github.com/akaxlh/ST-SHN
[136] Marine Cadastre. Automatic identification system (AIS) data. 2009. https://marinecadastre.gov/ais/
[137] Zheng Y, Wang LH, Zhang RC, Xie X, Ma WY. GeoLife: Managing and understanding your past life over maps. In: Proc. of the 9th Int’l
Conf. on Mobile Data Management. Beijing: IEEE, 2008. 211–212. [doi: 10.1109/MDM.2008.20]
[138] Microsoft Research. T-Drive trajectory data sample. 2011. https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-
sample/
[139] Huang XC, Yin YF, Lim S, Wang GF, Hu B, Varadarajan J, Zheng SL, Bulusu A, Zimmermann R. Grab-posisi: An extensive real-life
GPS trajectory dataset in Southeast Asia. In: Proc. of the 3rd ACM SIGSPATIAL Int’l Workshop on Prediction of Human Mobility.
[140] Didi. Chengdu dataset. 2017. https://github.com/Whale2021/Dataset
[141] Cho E, Myers SA, Leskovec J. Friendship and mobility: User movement in location-based social networks. In: Proc. of the 17th ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Diego: ACM, 2011. 1082–1090. [doi: 10.1145/2020408.2020579]
[142] Feng SS, Cong G, An B, Chee YM. POI2Vec: Geographical latent representation for predicting future visitors. In: Proc. of the 31st
AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2018. 102–108. [doi: 10.1609/aaai.v31i1.10500]