Page 436 - 《软件学报》2025年第4期
P. 436

1842                                                       软件学报  2025  年第  36  卷第  4  期


                 [115]  Tian YJ, Dong KW, Zhang CH, Zhang CX, Chawla NV. Heterogeneous graph masked autoencoders. In: Proc. of the 37th AAAI Conf.
                      on Artificial Intelligence. Washington: AAAI, 2023. 9997–10005. [doi: 10.1609/aaai.v37i8.26192]
                 [116]  Sun MC, Zhou KX, He X, Wang Y, Wang X. GPPT: Graph pre-training and prompt tuning to generalize graph neural networks. In:
                      Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 1717–1727. [doi: 10.1145/
                      3534678.3539249]
                 [117]  Sun XG, Cheng H, Li J, Liu B, Guan JH. All in one: Multi-task prompting for graph neural networks. In: Proc. of the 29th ACM
                      SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023. 2120–2131. [doi: 10.1145/3580305.3599256]
                 [118]  Li  SR,  Han  XT,  Bai  J.  AdapterGNN:  Efficient  delta  tuning  improves  generalization  ability  in  graph  neural  networks.
                      arXiv:2304.09595v1, 2023.
                 [119]  Gui AC, Ye JQ, Xiao H. G-Adapter: Towards structure-aware parameter-efficient transfer learning for graph Transformer networks. In:
                      Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI, 2024. 12226–12234. [doi: 10.1609/aaai.v38i11.29112]
                 [120]  Tian YJ, Pei SC, Zhang XL, Zhang CX, Chawla NV. Knowledge distillation on graphs: A survey. arXiv:2302.00219, 2023.
                 [121]  Zhang SC, Sohrabizadeh A, Wan C, Huang ZJ, Hu ZN, Wang YW, Lin YY, Cong J, Sun YZ. A survey on graph neural network
                      acceleration: Algorithms, systems, and customized hardware. arXiv:2306.14052, 2023.
                 [122]  Wan BR, Zhao JT, Wu C. Adaptive message quantization and parallelization for distributed full-graph GNN training. In: Proc. of the 6th
                      MLSys Conf. Miami Beach: mlsys.org, 2023. 5.
                 [123]  Jin BW, Liu G, Han C, Jiang M, Ji H, Han JW. Large language models on graphs: A comprehensive survey. arXiv:2312.02783, 2024.
                 [124]  Zhang ZY, Wang X, Zhang ZW, Li HY, Qin YJ, Zhu WW. LLM4DyG: Can large language models solve spatial-temporal problems on
                      dynamic  graphs?  In:  Proc.  of  the  30th  ACM  SIGKDD  Conf.  on  Knowledge  Discovery  and  Data  Mining.  Barcelona:  ACM,  2024.
                      4350–4361. [doi: 10.1145/3637528.3671709]
                 [125]  Wu LK, Zheng Z, Qiu ZP, Wang H, Gu HC, Shen TJ, Qin C, Zhu C, Zhu HS, Liu Q, Xiong H, Chen EH. A survey on large language
                      models for recommendation. World Wide Web, 2024, 27(5): 60. [doi: 10.1007/s11280-024-01291-2]
                 [126]  Pan SR, Luo LH, Wang YF, Chen C, Wang JP, Wu XD. Unifying large language models and knowledge graphs: A roadmap. IEEE
                      Trans. on Knowledge and Data Engineering, 2024, 36(7): 3580–3599. [doi: 10.1109/TKDE.2024.3352100]
                 [127]  Qian C, Tang HY, Yang ZR, Liang H, Liu Y. Can large language models empower molecular property prediction? arXiv:2307.07443,
                      2023.
                 [128]  Dwivedi VP, Joshi CK, Luu AT, Laurent T, Bengio Y, Bresson X. Benchmarking graph neural networks. The Journal of Machine
                      Learning Research, 2024, 24(43): 1–48.
                 [129]  California Department of Transportation. Performance measurement system (PeMS). 2001. https://pems.dot.ca.gov/
                 [130] Chicago: ACM, 2019. 1–10. [doi: 10.1145/3356995.3364536]
                      Li Y. DCRNN: Diffusion convolutional recurrent neural network. 2018. https://github.com/liyaguang/DCRNN
                 [131]  New York City Taxi & Limousine Commission. TLC trip record data. 2015. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
                      page
                 [132]  Citi Bike. Citi Bike trip data. 2013. https://s3.amazonaws.com/tripdata/index.html
                 [133]  ABIDE (Autism Brain Imaging Data Exchange). ABIDE I dataset. 2012. http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
                 [134]  Human Connectome Project. HCP young adult: 1200 subjects data release. 2017. https://www.humanconnectome.org/study/hcp-young-
                      adult/document/1200-subjects-data-release
                 [135]  Akaxlh. ST-SHN: Spatio-temporal self-hierarchical networks. 2021. https://github.com/akaxlh/ST-SHN
                 [136]  Marine Cadastre. Automatic identification system (AIS) data. 2009. https://marinecadastre.gov/ais/
                 [137]  Zheng Y, Wang LH, Zhang RC, Xie X, Ma WY. GeoLife: Managing and understanding your past life over maps. In: Proc. of the 9th Int’l
                      Conf. on Mobile Data Management. Beijing: IEEE, 2008. 211–212. [doi: 10.1109/MDM.2008.20]
                 [138]  Microsoft Research. T-Drive trajectory data sample. 2011. https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-
                      sample/
                 [139]  Huang XC, Yin YF, Lim S, Wang GF, Hu B, Varadarajan J, Zheng SL, Bulusu A, Zimmermann R. Grab-posisi: An extensive real-life
                      GPS trajectory dataset in Southeast Asia. In: Proc. of the 3rd ACM SIGSPATIAL Int’l Workshop on Prediction of Human Mobility.

                 [140]  Didi. Chengdu dataset. 2017. https://github.com/Whale2021/Dataset
                 [141]  Cho E, Myers SA, Leskovec J. Friendship and mobility: User movement in location-based social networks. In: Proc. of the 17th ACM
                      SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. San Diego: ACM, 2011. 1082–1090. [doi: 10.1145/2020408.2020579]
                 [142]  Feng SS, Cong G, An B, Chee YM. POI2Vec: Geographical latent representation for predicting future visitors. In: Proc. of the 31st
                      AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2018. 102–108. [doi: 10.1609/aaai.v31i1.10500]
   431   432   433   434   435   436   437   438   439   440   441