Page 435 - 《软件学报》2025年第4期
P. 435
邹慧琪 等: 基于图神经网络的复杂时空数据挖掘方法综述 1841
recurrent neural network. Neurocomputing, 2023, 531: 151–162. [doi: 10.1016/j.neucom.2023.02.017]
[95] Chen YK, Li ZH, Yang C, Wang XZ, Long GD, Xu GD. Adaptive graph recurrent network for multivariate time series imputation. In:
Proc. of the 29th Int’l Conf. on Neural Information Processing. Singapore: Springer, 2022. 64–73. [doi: 10.1007/978-981-99-1642-9_6]
[96] Kong XJ, Zhou WF, Shen GJ, Zhang WY, Liu NL, Yang Y. Dynamic graph convolutional recurrent imputation network for
spatiotemporal traffic missing data. Knowledge-based Systems, 2023, 261: 110188. [doi: 10.1016/j.knosys.2022.110188]
[97] Wu XS, Xu MY, Fang J, Wu XW. A multi-attention tensor completion network for spatiotemporal traffic data imputation. IEEE Internet
of Things Journal, 2022, 9(20): 20203–20213. [doi: 10.1109/JIOT.2022.3171780]
[98] Sun MJ, Zhou PY, Tian H, Liao Y, Xie HY. Spatial-temporal attention network for crime prediction with adaptive graph learning. In:
Proc. of the 31st Int’l Conf. on Artificial Neural Networks. Bristol: Springer, 2022. 656–669. [doi: 10.1007/978-3-031-15931-2_54]
[99] Xia LH, Huang C, Xu Y, Dai P, Bo LF, Zhang XY, Chen TY. Spatial-temporal sequential hypergraph network for crime prediction with
dynamic multiplex relation learning. In: Proc. of the 30th Int’l Joint Conf. on Artificial Intelligence. Montreal: ijcai.org, 2021.
1631–1637. [doi: 10.24963/ijcai.2021/225]
[100] Panagopoulos G, Nikolentzos G, Vazirgiannis M. Transfer graph neural networks for pandemic forecasting. In: Proc. of the 35th AAAI
Conf. on Artificial Intelligence. AAAI, 2021. 4838–4845. [doi: 10.1609/aaai.v35i6.16616]
[101] Jin RD, Xia TQ, Liu X, Murata T, Kim KS. Predicting emergency medical service demand with bipartite graph convolutional networks.
IEEE Access, 2021, 9: 9903–9915. [doi: 10.1109/ACCESS.2021.3050607]
[102] Liang YX, Xia YT, Ke SY, Wang YW, Wen QS, Zhang JB, Zheng Y, Zimmermann R. AirFormer: Predicting nationwide air quality in
China with Transformers. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI, 2023. 14329–14337. [doi: 10.
1609/aaai.v37i12.26676]
[103] Chen SY, Zwart JA, Jia XW. Physics-guided graph meta learning for predicting water temperature and streamflow in stream networks.
In: Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 2752–2761. [doi: 10.
1145/3534678.3539115]
[104] Khodayar M, Liu GY, Wang JH, Kaynak O, Khodayar ME. Spatiotemporal behind-the-meter load and PV power forecasting via deep
graph dictionary learning. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(10): 4713–4727. [doi: 10.1109/TNNLS.
2020.3042434]
[105] Karimi AM, Wu YH, Koyuturk M, French RH. Spatiotemporal graph neural network for performance prediction of photovoltaic power
systems. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 15323–15330. [doi: 10.1609/aaai.v35i17.17799]
[106] Yan JD, Chen YZ, Xiao ZX, Zhang S, Jiang MX, Wang TQ, Zhang T, Lv JL, Becker B, Zhang R, Zhu DJ, Han JW, Yao DZ, Kendrick
KM, Liu TM, Jiang X. Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph
neural networks (Multi-Head GAGNNs). Medical Image Analysis, 2022, 80: 102518. [doi: 10.1016/j.media.2022.102518]
[107] Qiu WY, Ma L, Jiang TZ, Zhang Y. Unrevealing reliable cortical parcellation of individual brains using resting-state functional
magnetic resonance imaging and masked graph convolutions. Frontiers in Neuroscience, 2022, 16: 838347. [doi: 10.3389/fnins.2022.
838347]
[108] Kim BH, Ye JC, Kim JJ. Learning dynamic graph representation of brain connectome with spatio-temporal attention. In: Proc. of the
35th Conf. on Neural Information Processing Systems. NeurIPS, 2021. 4314–4327.
[109] Yang HZ, Li XX, Wu YF, Li SY, Lu S, Duncan JS, Gee JC, Gu S. Interpretable multimodality embedding of cerebral cortex using
attention graph network for identifying bipolar disorder. In: Proc. of the 22nd Int’l Conf. on Medical Image Computing and Computer-
assisted Intervention. Shenzhen: Springer, 2019. 799–807. [doi: 10.1007/978-3-030-32248-9_89]
[110] Li ML, Chen HB, Cheng ZX. An attention-guided spatiotemporal graph convolutional network for sleep stage classification. Life, 2022,
12(5): 622. [doi: 10.3390/life12050622]
[111] Stankevičiūtė K, Azevedo T, Campbell A, Bethlehem R, Liò P. Population graph GNNs for brain age prediction. In: Proc. of the 2020
ICML Workshop on Graph Representation Learning and Beyond. 2020. 202.
[112] Liu YX, Zheng YZ, Zhang DK, Lee VCS, Pan SR. Beyond smoothing: Unsupervised graph representation learning with edge
heterophily discriminating. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI, 2023. 4516–4524. [doi: 10.
1609/aaai.v37i4.25573]
[113] Duan JC, Wang SW, Zhang P, Zhu E, Hu JT, Jin H, Liu Y, Dong ZB. Graph anomaly detection via multi-scale contrastive learning
networks with augmented view. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI, 2023. 7459–7467. [doi:
10.1609/aaai.v37i6.25907]
[114] Chen JL, Kou G. Attribute and structure preserving graph contrastive learning. In: Proc. of the 37th AAAI Conf. on Artificial
Intelligence. Washington: AAAI, 2023. 7024–7032. [doi: 10.1609/aaai.v37i6.25858]