Page 434 - 《软件学报》2025年第4期
P. 434

1840                                                       软件学报  2025  年第  36  卷第  4  期


                      Inc., 2022. 1800.
                 [72]  Liu CX, Yang S, Xu QX, Li ZS, Long C, Li ZY, Zhao R. Spatial-temporal large language model for traffic prediction. In: Proc. of the
                      25th IEEE Int’l Conf. on Mobile Data Management. Brussels: IEEE, 2024. 31–40. [doi: 10.1109/MDM61037.2024.00025]
                 [73]  Li ZH, Xia LH, Tang JB, Xu Y, Shi L, Xia L, Yin DW, Huang C. UrbanGPT: Spatio-temporal large language models. In: Proc. of the
                      30th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Barcelona: ACM, 2024. 5351–5362. [doi: 10.1145/3637528.
                      3671578]
                 [74]  Huang L, Yu WJ, Ma WT, Zhong WH, Feng ZY, Wang HT, Chen QL, Peng WH, Feng XC, Qin B, Liu T. A survey on hallucination in
                      large language models: Principles, taxonomy, challenges, and open questions. arXiv:2311.05232, 2023.
                 [75]  Ye RS, Zhang CQ, Wang RH, Xu SY, Zhang YF. Natural language is all a graph needs. arXiv:2308.07134v2, 2023.
                 [76]  Duan  KY,  Liu  Q,  Chua  TS,  Yan  SC,  Ooi  WT,  Xie  QZ,  He  JX.  SimTeG:  A  frustratingly  simple  approach  improves  textual  graph
                      learning. arXiv:2308.02565, 2023.
                 [77]  Liu  H,  Feng  JR,  Kong  LC,  Liang  NY,  Tao  DC,  Chen  YX,  Zhang  MH.  One  for  all:  Towards  training  one  graph  model  for  all
                      classification tasks. In: Proc. of the 12th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024.
                 [78]  Tian YJ, Song H, Wang ZC, Wang HZ, Hu ZQ, Wang F, Chawla NV, Xu PP. Graph neural prompting with large language models. In:
                      Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI, 2024. 19080–19088. [doi: 10.1609/aaai.v38i17.29875]
                      2020. 2697–2705. [doi: 10.1145/3394486.3403320]
                 [79]  Luo LH, Li YF, Haffari G, Pan SR. Reasoning on graphs: Faithful and interpretable large language model reasoning. In: Proc. of the
                      12th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024.
                 [80]  Xu WJ, Liu B, Peng M, Jia X, Peng M. Pre-trained language model with prompts for temporal knowledge graph completion. In: Proc. of
                      the  2023  Findings  of  the  Association  for  Computational  Linguistics.  Toronto:  Association  for  Computational  Linguistics,  2023.
                      7790–7803. [doi: 10.18653/v1/2023.findings-acl.493]
                 [81]  Zhang  MM,  Sun  MW,  Wang  P,  Fan  S,  Mo  YH,  Xu  XX,  Liu  H,  Yang  C,  Shi  C.  GraphTranslator:  Aligning  graph  model  to  large
                      language  model  for  open-ended  tasks.  In:  Proc.  of  the  2024  ACM  Web  Conf.  Singapore:  ACM,  2024.  1003–1014.  [doi:  10.1145/
                      3589334.3645682]
                 [82]  Ren YL, Chen Y, Liu S, Wang BY, Yu HY, Cui ZY. TPLLM: A traffic prediction framework based on pretrained large language
                      models. arXiv:2403.02221, 2024.
                 [83]  Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI Blog, 2019,
                      1(8): 9.
                 [84]  Hu EJ, Shen YL, Wallis P, Allen-Zhu Z, Li YZ, Wang SA, Wang L, Chen WZ. LoRA: Low-rank adaptation of large language models.
                      In: Proc. of the 10th Int’l Conf. on Learning Representations. OpenReview.net, 2022.
                 [85]  Jin  M,  Koh  HY,  Wen  QS,  Zambon  D,  Alippi  C,  Webb  GI,  King  I,  Pan  SR.  A  survey  on  graph  neural  networks  for  time  series:
                      Forecasting, classification, imputation, and anomaly detection. arXiv:2307.03759, 2024.
                 [86]  Song C, Lin YF, Guo SN, Wan HY. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal
                      network data forecasting. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 914–921. [doi: 10.1609/
                      aaai.v34i01.5438]
                 [87]  Lan SY, Ma YT, Huang WK, Wang WW, Yang HY, Li P. DSTAGNN: Dynamic spatial-temporal aware graph neural network for
                      traffic flow forecasting. In: Proc. of the 39th Int’l Conf. on Machine Learning. Baltimore: PMLR, 2022. 11906–11917.
                 [88]  Fang Z, Long QQ, Song GJ, Xie KQ. Spatial-temporal graph ODE networks for traffic flow forecasting. In: Proc. of the 27th ACM
                      SIGKDD Conf. on Knowledge Discovery & Data Mining. Singapore: ACM, 2021. 364–373. [doi: 10.1145/3447548.3467430]
                 [89]  Luo X, Yuan JY, Huang ZJ, Jiang HY, Qin YF, Ju W, Zhang M, Sun YZ. HOPE: High-order graph ODE for modeling interacting
                      dynamics. In: Proc. of the 40th Int’l Conf. on Machine Learning. Honolulu: PMLR, 2023. 23124–23139.
                 [90]  Fang XM, Huang JZ, Wang F, Zeng LK, Liang HJ, Wang HF. ConSTGAT: Contextual spatial-temporal graph attention network for
                      travel time estimation at baidu maps. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM,

                 [91]  Fu K, Meng FL, Ye JP, Wang Z. CompactETA: A fast inference system for travel time prediction. In: Proc. of the 26th ACM SIGKDD
                      Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020. 3337–3345. [doi: 10.1145/3394486.3403386]
                 [92]  Zhou ZY, Wang Y, Xie XK, Chen LL, Liu HC. RiskOracle: A minute-level citywide traffic accident forecasting framework. In: Proc. of
                      the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 1258–1265. [doi: 10.1609/aaai.v34i01.5480]
                 [93]  Wang ZN, Jiang RH, Xue H, Salim FD, Xue H, Salim FD, Song X, Shibasaki R. Event-aware multimodal mobility nowcasting. In: Proc.
                      of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 4228–4236. [doi: 10.1609/aaai.v36i4.20342]
                 [94]  Shen GJ, Zhou WF, Zhang WY, Liu NL, Liu Z, Kong XJ. Bidirectional spatial-temporal traffic data imputation via graph attention
   429   430   431   432   433   434   435   436   437   438   439