Page 434 - 《软件学报》2025年第4期
P. 434
1840 软件学报 2025 年第 36 卷第 4 期
Inc., 2022. 1800.
[72] Liu CX, Yang S, Xu QX, Li ZS, Long C, Li ZY, Zhao R. Spatial-temporal large language model for traffic prediction. In: Proc. of the
25th IEEE Int’l Conf. on Mobile Data Management. Brussels: IEEE, 2024. 31–40. [doi: 10.1109/MDM61037.2024.00025]
[73] Li ZH, Xia LH, Tang JB, Xu Y, Shi L, Xia L, Yin DW, Huang C. UrbanGPT: Spatio-temporal large language models. In: Proc. of the
30th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Barcelona: ACM, 2024. 5351–5362. [doi: 10.1145/3637528.
3671578]
[74] Huang L, Yu WJ, Ma WT, Zhong WH, Feng ZY, Wang HT, Chen QL, Peng WH, Feng XC, Qin B, Liu T. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open questions. arXiv:2311.05232, 2023.
[75] Ye RS, Zhang CQ, Wang RH, Xu SY, Zhang YF. Natural language is all a graph needs. arXiv:2308.07134v2, 2023.
[76] Duan KY, Liu Q, Chua TS, Yan SC, Ooi WT, Xie QZ, He JX. SimTeG: A frustratingly simple approach improves textual graph
learning. arXiv:2308.02565, 2023.
[77] Liu H, Feng JR, Kong LC, Liang NY, Tao DC, Chen YX, Zhang MH. One for all: Towards training one graph model for all
classification tasks. In: Proc. of the 12th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024.
[78] Tian YJ, Song H, Wang ZC, Wang HZ, Hu ZQ, Wang F, Chawla NV, Xu PP. Graph neural prompting with large language models. In:
Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI, 2024. 19080–19088. [doi: 10.1609/aaai.v38i17.29875]
2020. 2697–2705. [doi: 10.1145/3394486.3403320]
[79] Luo LH, Li YF, Haffari G, Pan SR. Reasoning on graphs: Faithful and interpretable large language model reasoning. In: Proc. of the
12th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024.
[80] Xu WJ, Liu B, Peng M, Jia X, Peng M. Pre-trained language model with prompts for temporal knowledge graph completion. In: Proc. of
the 2023 Findings of the Association for Computational Linguistics. Toronto: Association for Computational Linguistics, 2023.
7790–7803. [doi: 10.18653/v1/2023.findings-acl.493]
[81] Zhang MM, Sun MW, Wang P, Fan S, Mo YH, Xu XX, Liu H, Yang C, Shi C. GraphTranslator: Aligning graph model to large
language model for open-ended tasks. In: Proc. of the 2024 ACM Web Conf. Singapore: ACM, 2024. 1003–1014. [doi: 10.1145/
3589334.3645682]
[82] Ren YL, Chen Y, Liu S, Wang BY, Yu HY, Cui ZY. TPLLM: A traffic prediction framework based on pretrained large language
models. arXiv:2403.02221, 2024.
[83] Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI Blog, 2019,
1(8): 9.
[84] Hu EJ, Shen YL, Wallis P, Allen-Zhu Z, Li YZ, Wang SA, Wang L, Chen WZ. LoRA: Low-rank adaptation of large language models.
In: Proc. of the 10th Int’l Conf. on Learning Representations. OpenReview.net, 2022.
[85] Jin M, Koh HY, Wen QS, Zambon D, Alippi C, Webb GI, King I, Pan SR. A survey on graph neural networks for time series:
Forecasting, classification, imputation, and anomaly detection. arXiv:2307.03759, 2024.
[86] Song C, Lin YF, Guo SN, Wan HY. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal
network data forecasting. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 914–921. [doi: 10.1609/
aaai.v34i01.5438]
[87] Lan SY, Ma YT, Huang WK, Wang WW, Yang HY, Li P. DSTAGNN: Dynamic spatial-temporal aware graph neural network for
traffic flow forecasting. In: Proc. of the 39th Int’l Conf. on Machine Learning. Baltimore: PMLR, 2022. 11906–11917.
[88] Fang Z, Long QQ, Song GJ, Xie KQ. Spatial-temporal graph ODE networks for traffic flow forecasting. In: Proc. of the 27th ACM
SIGKDD Conf. on Knowledge Discovery & Data Mining. Singapore: ACM, 2021. 364–373. [doi: 10.1145/3447548.3467430]
[89] Luo X, Yuan JY, Huang ZJ, Jiang HY, Qin YF, Ju W, Zhang M, Sun YZ. HOPE: High-order graph ODE for modeling interacting
dynamics. In: Proc. of the 40th Int’l Conf. on Machine Learning. Honolulu: PMLR, 2023. 23124–23139.
[90] Fang XM, Huang JZ, Wang F, Zeng LK, Liang HJ, Wang HF. ConSTGAT: Contextual spatial-temporal graph attention network for
travel time estimation at baidu maps. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM,
[91] Fu K, Meng FL, Ye JP, Wang Z. CompactETA: A fast inference system for travel time prediction. In: Proc. of the 26th ACM SIGKDD
Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020. 3337–3345. [doi: 10.1145/3394486.3403386]
[92] Zhou ZY, Wang Y, Xie XK, Chen LL, Liu HC. RiskOracle: A minute-level citywide traffic accident forecasting framework. In: Proc. of
the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 1258–1265. [doi: 10.1609/aaai.v34i01.5480]
[93] Wang ZN, Jiang RH, Xue H, Salim FD, Xue H, Salim FD, Song X, Shibasaki R. Event-aware multimodal mobility nowcasting. In: Proc.
of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 4228–4236. [doi: 10.1609/aaai.v36i4.20342]
[94] Shen GJ, Zhou WF, Zhang WY, Liu NL, Liu Z, Kong XJ. Bidirectional spatial-temporal traffic data imputation via graph attention